, Volume 754, Issue 1, pp 179–188 | Cite as

Effect of dinoflagellates and diatoms on the feeding response and survival of Aurelia sp. polyps

  • Xu-guang Huang
  • Bangqin Huang
  • Yang Zeng
  • Shun-xing Li


To investigate whether dinoflagellates and diatoms interact with the polyp stage of Aurelia sp., feeding responses to dinoflagellates and diatoms and the survival of polyps fed on phytoplankton or Artemia sp. were studied in laboratory experiments. Feeding responses to motionless diatoms, defined by the movement of the polyp tentacles, were seldom seen but responses to motile dinoflagellates were clearly observed. Meanwhile, the feeding response was significantly positively related to the equivalent spherical diameters of the dinoflagellates. Gastric cavity analysis indicated that micro-phytoplankton (Alexandrium catenella, Akashiwo sanguinea), which were in high concentration, could be detected, but nano-phytoplankton (Prorocentrum donghaiense, Karenia brevis) were not detected, implying that nano-phytoplankton were not eaten by Aurelia sp. polyps. We also observed that dinoflagellates whether nano or micro lost their motility and became attached on Aurelia sp. polyps. Compared to feeding on Artemia sp. nauplii, survival of the polyps was significantly depressed after 91 days feeding on phytoplankton in all combinations of species and concentrations. High mortality of the polyps when feeding on a high concentration (80 mg C l−1) of dinoflagellates implied that the polyps may be harmed when they coexisted with dinoflagellate blooms, so that the mass occurrence of large numbers of Aurelia medusae in natural coastal waters was depressed.


Diatoms Dinoflagellates Jellyfish bloom Feeding response Survival 



We thank Dr. Chaolun Li (Institute of Oceanology, Chinese Academy of Science) for providing a strain of Aurelia sp. polyp, and the maintenance method for starting up the study. We also thank Mr. Yue Gao for providing culture species and strains of phytoplankton. This study was supported by the National Basic Research Program of China (No. 2011CB403603) and the China NSF (No. 41206096). Professor John Hodgkiss is thanked for his assistance with English.


  1. Arai, M. N., 1997. A functional biology of Scyphozoa. Chapman & Hall, New York: 316.Google Scholar
  2. Attrill, M. J., J. Wright & M. Edwards, 2007. Climate-related increases in jellyfish frequency suggest a more gelatinous future for the North Sea. Limnology and Oceanography 52(1): 480–485.CrossRefGoogle Scholar
  3. Båmstedt, U., B. Wild & M. Martinussen, 2001. Significance of food type for growth of ephyrae Aurelia aurita (Scyphozoa). Marine Biology 139: 641–650.CrossRefGoogle Scholar
  4. Brodeur, R. D., H. Sugisaki & G. L. Hunt, 2002. Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Marine Ecology Progress Series 233: 89–103.CrossRefGoogle Scholar
  5. Colin, S. P., J. H. Costello, W. M. Graham & J. Higgins, 2005. Omnivory by the small cosmopolitan hydromedusa Aglaura hemistoma. Limnology and Oceanography 50(4): 1264–1268.CrossRefGoogle Scholar
  6. Condon, R. H., C. M. Duarte, K. A. Pitt, K. L. Robinson, C. H. Lucas, K. R. Sutherland, H. W. Mianzan, M. Bogeberg, J. E. Purcell & M. B. Decker, 2013. Recurrent jellyfish blooms are a consequence of global oscillations. Proceedings of the National Academy of Sciences 110(3): 1000–1005.CrossRefGoogle Scholar
  7. Egleston, E. S. & F. M. Morel, 2008. Nickel limitation and zinc toxicity in a urea-grown diatom. Limnology and Oceanography 53(6): 2462.CrossRefGoogle Scholar
  8. Graham, W. M., 2013. Jellyfish life histories: role of polyps in forming and maintaining scyphomedusa populations. Advances in Marine Biology 63: 133.Google Scholar
  9. Grondahl, F., 1988. Interactions between polyps of Aurelia aurita and planktonic larvae of scyphozoans: an experimental study. Marine Ecology and Progress Series 45: 87–93.CrossRefGoogle Scholar
  10. Han, C. H. & S. I. Uye, 2010. Combined effects of food supply and temperature on asexual reproduction and somatic growth of polyps of the common jellyfish Aurelia aurita s.l. Plankton and Benthos Research 5(3): 98–105.CrossRefGoogle Scholar
  11. Hansson, L. J. & T. Kiørboe, 2006. Prey-specific encounter rates and handling efficiencies as causes of prey selectivity in ambush-feeding hydromedusae. Limnology Oceanography 51(4): 1849–1858.CrossRefGoogle Scholar
  12. Huang, X., Y. Zeng, B. Huang & S. Li, 2014. Effect of Alexandrium catenella (Dinophyta) concentration on the behavior and growth of Aurelia sp. ephyrae. Journal of Plankton Research 36(2): 591–595.CrossRefGoogle Scholar
  13. Kamiyama, T., 2011. Planktonic ciliates as a food source for the scyphozoan Aurelia aurita (sl): feeding activity and assimilation of the polyp stage. Journal of Experimental Marine Biology and Ecology 407(2): 207–215.CrossRefGoogle Scholar
  14. Kamiyama, T., 2013. Planktonic ciliates as food for the scyphozoan Aurelia aurita (sl): effects on asexual reproduction of the polyp stage. Journal of Experimental Marine Biology and Ecology 445: 21–28.CrossRefGoogle Scholar
  15. Litchman, E., K. F. Edwards, C. A. Klausmeier & M. K. Thomas, 2012. Phytoplankton niches, traits and eco-evolutionary responses to global environmental change. Marine Ecology Progress series 470: 235–248.CrossRefGoogle Scholar
  16. Lynam, C. P., M. J. Gibbons, B. E. Axelsen, C. A. Sparks, J. Coetzee, B. G. Heywood & A. S. Brierley, 2006. Jellyfish overtake fish in a heavily fished ecosystem. Current Biology 16(13): 492–493.CrossRefGoogle Scholar
  17. Matveev, I. V., L. S. Adonin, T. G. Shaposhnikova & O. I. Podgornaya, 2012. Aurelia aurita–Cnidarian with a prominent medusiod stage. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 318(1): 1–12.CrossRefGoogle Scholar
  18. Menden-Deuer, S. & E. J. Lessard, 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45(3): 569–579.CrossRefGoogle Scholar
  19. Mills, C. E., 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451: 55–68.CrossRefGoogle Scholar
  20. Pinheiro, J., D. Bates, S. DebRoy & D. Sarkar, 2011. The R Development Core Team 2011 nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-98. R Foundation for Statistical Computing, Vienna, Austria Available at:
  21. Purcell, J. E., 2012. Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Annual Review of Marine Science 4: 209–235.CrossRefPubMedGoogle Scholar
  22. Purcell, J. E., D. Atienza, V. Fuentes, A. Olariaga, U. Tilves, C. Colahan & J.-M. Gili, 2012. Temperature effects on asexual reproduction rates of scyphozoan species from the northwest Mediterranean Sea. Hydrobiologia 690(1): 169–180.CrossRefGoogle Scholar
  23. Regula, C., S. P. Colin, J. H. Costello & H. Kordula, 2009. Prey selection mechanism of ambush-foraging hydromedusae. Marine Ecology Progress Series 374: 135–144.CrossRefGoogle Scholar
  24. Richardson, A. J., A. Bakun, G. C. Hays & M. J. Gibbons, 2009. The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends in Ecology & Evolution 24(6): 312–322.CrossRefGoogle Scholar
  25. Sørnes, T. A. & D. L. Aksnes, 2004. Predation efficiency in visual and tactile zooplanktivores. Limnology and Oceanography 49(1): 69–75.CrossRefGoogle Scholar
  26. Shick, J. M., 1973. Effects of salinity and starvation on the uptake and utilization of dissolved glycine by Aurelia aurita polyps. The Biological Bulletin 144(1): 172–179.CrossRefGoogle Scholar
  27. Shick, J. M., 1975. Uptake and utilization of dissolved glycine by Aurelia aurita scyphistomae: temperature effects on the uptake process; nutritional role of dissolved amino acids. The Biological Bulletin 148(1): 117–140.CrossRefPubMedGoogle Scholar
  28. Skikne, S., R. Sherlock & B. Robison, 2009. Uptake of dissolved organic matter by ephyrae of two species of scyphomedusae. Journal of Plankton Research 31(12): 1563–1570.CrossRefGoogle Scholar
  29. Southward, A., 1955. Observations on the ciliary currents of the jellyfish Aurelia aurita L. Journal of the Marine Biological Association of the United Kingdom 34: 201–216.CrossRefGoogle Scholar
  30. Thorington, G. U. & D. A. Hessinger, 1988. Control of cnida discharge. I. Evidence for two classes of chemoreceptor. The Biological Bulletin 174(2): 163–171.CrossRefGoogle Scholar
  31. Winans, A. K. & J. E. Purcell, 2010. Effects of pH on asexual reproduction and statolith formation of the scyphozoan. Aurelia labiata. Hydrobiologia 645(1): 39–52.CrossRefGoogle Scholar
  32. Willcox, S., N. A. Moltschaniwskyj & C. Crawford, 2007. Asexual reproduction in scyphistomae of Aurelia sp.: Effects of temperature and salinity in an experimental study. Journal of Experimental Marine Biology and Ecology 353: 107–114.CrossRefGoogle Scholar
  33. Uye, S. I. & Y. Kayano, 1994. Predatory feeding behavior of Tortanus (Copepoda: Calanoida): life-stage differences and the predation impact on small planktonic crustaceans. Journal of Crustacean Biology 40: 473–483.CrossRefGoogle Scholar
  34. Yamaguchi, H., H. C. Kim, Y. B. Son, S. W. Kim, K. Okamura, Y. Kiyomoto & J. Ishizaka, 2012. Seasonal and summer interannual variations of SeaWiFS chlorophyll a in the Yellow Sea and East China Sea. Progress in Oceanography 105: 22–29.CrossRefGoogle Scholar
  35. Zheng, S., X. X. Sun & S. Sun, 2012. The grazing of Aurelia sp.1 on Skeletonema costatum and Prorocentrum donghaiense. Oceanologia et Limnologia Sinica 43(3): 445–450. (in Chinese with English abstract).Google Scholar
  36. Zhou, M., 2010. Environmental settings and harmful algal blooms in the sea area adjacent to the Changjiang river estuary. Coastal Environmental and Ecosystem Issues of the East China Sea 2010: 133–149.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Xu-guang Huang
    • 1
    • 2
  • Bangqin Huang
    • 1
  • Yang Zeng
    • 1
  • Shun-xing Li
    • 2
  1. 1.Key Laboratory of Coastal and Wetland Ecosystems, Ministry of Education, Fujian Provincial Key Laboratory of Coastal Ecology and Environmental Studies, Xiamen UniversityXiamenChina
  2. 2.Fujian Province Key Laboratory of Modern Analytical Science and Separation TechnologyMinnan Normal UniversityZhangzhouChina

Personalised recommendations