, Volume 754, Issue 1, pp 169–178 | Cite as

Effect of temperature and food type on asexual reproduction in Aurelia sp.1 polyps

  • Yan-Tao Wang
  • Shan Zheng
  • Song Sun
  • Fang Zhang


Environmental factors such as temperature and food type affect the rate of asexual reproduction of jellyfish at the polyp stage. Combinations of three temperatures (10, 15, and 20°C) and four food treatments (Prorocentrum donghaiense, Skeletonema costatum, Artemia sp. nauplii, and no food) were established to examine the asexual reproduction strategy of Aurelia sp.1. The results allowed us to reject two null hypotheses: no effect of temperature and no effect of food. A change from 20 to 15 or 10°C induced polyps to release ephyrae when food was present, while polyps without food did not strobilate. Polyps with Artemia sp. nauplii as prey produced more polyps through buds and podocysts, as well as more ephyrae through strobilation. At 20°C, the mortality rates of polyps exceeded 50%, except for those served by Artemia sp. nauplii. The number of polyps increased rapidly with Artemia sp. nauplii as prey. We conclude that when animal prey is limited, plants can serve as a nutrient source and satisfy the energy requirements for polyps at lower temperatures (10 or 15°C). Phytoplankton cannot provide adequate nutrition to polyps at higher temperature (20°). Abundant animal prey and suitable temperatures are essential conditions for polyps to strobilate and release ephyrae, leading to jellyfish blooms.


Aurelia sp.1 Temperature Food type Asexual reproduction Bloom 



Assistance given by the members of the Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences is greatly appreciated. We thank the anonymous referees for their constructive criticisms. This research was supported by National Basic Research Program of China (973 Program No. 2011CB403601), NSFC-Shandong Joint Fund for Marine Science Research Centers (Grant No. U1406403), and the National Natural Science Foundation of China (No. 41106133).


  1. Båmstedt, U., B. Wild & M. B. Martinussen, 2001. Significance of food type for growth of ephyrae Aurelia aurita (Scyphozoa). Mar Biol 139(4): 641–650.CrossRefGoogle Scholar
  2. Condon, R. H., W. M. Graham, C. M. Duarte, K. A. Pitt, C. H. Lucas, S. H. D. Haddock, K. R. Sutherland, K. L. Robinson, M. N. Dawson, M. B. Decker, C. E. Mills, J. E. Purcell, A. Malej, H. Mianzan, S. I. Uye, S. Gelcich & L. P. Madin, 2012. Questioning the rise of gelatinous zooplankton in the world’s oceans. Bioscience 62(2): 160–169.CrossRefGoogle Scholar
  3. Dawson, M. N. & L. E. Martin, 2001. Geographic variation and ecological adaptation in Aurelia (Scyphozoa, Semaeostomeae): some implications from molecular phylogenetics. Hydrobiologia 451(1–3): 259–273.CrossRefGoogle Scholar
  4. Dawson, M. N., A. Sen Gupta & M. H. England, 2005. Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryptogenic species. Proceedings of the National Academy of Sciences of the United States of America 102(34): 11968–11973.CrossRefPubMedCentralPubMedGoogle Scholar
  5. Dong, Z. J., D. Y. Liu, Y. J. Wang, B. P. Di, X. K. Song & Y. J. Shi, 2012. A report on a Moon Jellyfish Aurelia aurita bloom in Sishili Bay, Northern Yellow Sea of China in 2009. Aquat Ecosyst Health 15(2): 161–167.Google Scholar
  6. Hernroth, L. & F. Grondahl, 1985. On the biology of Aurelia aurita (L).3. Predation by Coryphella-Verrucosa (Gastropoda, Opisthobranchia), a major factor regulating the development of Aurelia populations in the Gullmar Fjord, Western Sweden. Ophelia 24(1): 37–45.CrossRefGoogle Scholar
  7. Hansson, L. J., 2006. A method for in situ estimation of prey selectivity and predation rate in large plankton, exemplified with the jellyfish Aurelia aurita (L.). Journal of Experimental Marine Biology and Ecology 328(1): 113–126.CrossRefGoogle Scholar
  8. Holst, S., 2012. Effects of climate warming on strobilation and ephyra production of North Sea scyphozoan jellyfish. Hydrobiologia 690(1): 127–140.CrossRefGoogle Scholar
  9. Jassby, A. D., J. E. Cloern & B. E. Cole, 2002. Annual primary production: Patterns and mechanisms of change in a nutrient-rich tidal ecosystem. Limnol Oceanogr 47(3): 698–712.CrossRefGoogle Scholar
  10. Kamiyama, T., 2011. Planktonic ciliates as a food source for the scyphozoan Aurelia aurita (s.l.): feeding activity and assimilation of the polyp stage. Journal of Experimental Marine Biology and Ecology 407(2): 207–215.CrossRefGoogle Scholar
  11. Kawahara, M., S. Uye, K. Ohtsu & H. Izumi, 2006. Unusual population explosion of the giant jellyfish Nemopilemia nomurai (Scyphozoa : Rhizostomeae) in East Asian waters. Marine Ecology Progress Series 307: 161–173.CrossRefGoogle Scholar
  12. Ki, J. S., D. S. Hwang, K. Shin, W. D. Yoon, D. Lim, Y. S. Kang, Y. Lee & J. S. Lee, 2008. Recent moon jelly (Aurelia sp.1) blooms in Korean coastal waters suggest global expansion: examples inferred from mitochondrial COI and nuclear ITS-5.8S rDNA sequences. ICES Journal of Marine Science 65(3): 443–452.CrossRefGoogle Scholar
  13. Kramp, P. L., 1961. Synopsis of Medusae of World. Journal of the Marine Biological Association of the United Kingdom 40(Nov):1–469.Google Scholar
  14. Liu, W. C., W. T. Lo, J. E. Purcell & H. H. Chang, 2009. Effects of temperature and light intensity on asexual reproduction of the scyphozoan, Aurelia aurita (L.) in Taiwan. Hydrobiologia 616: 247–258.CrossRefGoogle Scholar
  15. Lucas, C. H., 2001. Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451(1–3): 229–246.CrossRefGoogle Scholar
  16. Malej, A., T. Kogovsek, A. Ramsak & L. Catenacci, 2012. Blooms and population dynamics of moon jellyfish in the northern Adriatic. Cahiers de Biologie Marine 53(3): 337–342.Google Scholar
  17. Michael, T., A. Villanueva, K. Joshi & S. Priya, 2013. Physical modeling of Mastigias papua feeding structures and simulation of their effect on bell stress and kinematics. Proc Spie 8686 doi:Unsp 868608 doi:  10.1117/12.2009933.
  18. Miyake, H., M. Terazaki & Y. Kakinuma, 2002. On the polyps of the common jellyfish Aurelia aurita in Kagoshima Bay. J Oceanogr 58(3): 451–459.CrossRefGoogle Scholar
  19. Purcell, J. E., S. Uye & W. T. Lo, 2007. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Marine Ecology Progress Series 350: 153–174.CrossRefGoogle Scholar
  20. Purcell, J. E., D. Atienza, V. Fuentes, A. Olariaga, U. Tilves, C. Colahan & J. M. Gili, 2012. Temperature effects on asexual reproduction rates of scyphozoan species from the northwest Mediterranean Sea. Hydrobiologia 690(1): 169–180.CrossRefGoogle Scholar
  21. Regula, C., S. P. Colin, J. H. Costello et al., 2009. Prey selection mechanism of ambush-foraging hydromedusae. Marine Ecology Progress Series 374: 135–144.Google Scholar
  22. Sabates, A., F. Pages, D. Atienza, V. Fuentes, J. E. Purcell & J. M. Gili, 2010. Planktonic cnidarian distribution and feeding of Pelagia noctiluca in the NW Mediterranean Sea. Hydrobiologia 645(1): 153–165.CrossRefGoogle Scholar
  23. Sarno, D., W. H. C. F. Kooistra, S. Balzano, P. E. Hargraves & A. Zingone, 2007. Diversity in the genus Skeletonema (Bacillariophyceae): III. Phylogenetic position and morphological variability of Skeletonema costatum and Skeletonema grevillei, with the description of Skeletonema ardens sp nov. J Phycol 43(1): 156–170.CrossRefGoogle Scholar
  24. Sun, X. X., S. W. Wang & S. Sun, 2011. Introduction to the China Jellyfish Project—the key processes, mechanism and ecological consequences of jellyfish bloom in China coastal waters. Chinese Journal of Oceanology and Limnology 29(2): 491–492.CrossRefGoogle Scholar
  25. Thein, H., H. Ikeda & S.-I. Uye, 2012. The potential role of podocysts in perpetuation of the common jellyfish Aurelia aurita s.l. (Cnidaria: Scyphozoa) in anthropogenically perturbed coastal waters. Hydrobiologia 690(1): 157–167.CrossRefGoogle Scholar
  26. Uye, S. & H. Shimauchi, 2005. Population biomass, feeding, respiration and growth rates, and carbon budget of the scyphomedusa Aurelia aurita in the Inland Sea of Japan. J Plankton Res 27(3): 237–248.CrossRefGoogle Scholar
  27. Wang, Y. T., S. Sun & C. L. Li, 2012. Effects of temperature and food on asexual reproduction of the scyphozoan, Aurelia sp.1. Oceanologia et Limnologia Sinica 43: 900–904. (in Chinese with English abstract).Google Scholar
  28. Willcox, S., N. A. Moltschamwskyj & C. Crawford, 2007a. Asexual reproduction in scyphistomae of Aurelia sp.: effects of temperature and salinity in an experimental study. Journal of Experimental Marine Biology and Ecology 353(1): 107–114.CrossRefGoogle Scholar
  29. Willcox, S., N. A. Moltschamwskyj & C. Crawford, 2007b. Asexual reproduction in scyphistomae of Aurelia sp.: effects of temperature and salinity in an experimental study. Journal of Experimental Marine Biology and Ecology 353(1): 107–114.CrossRefGoogle Scholar
  30. Zheng, S., X. X. Sun & S. Sun, 2012. The grazing of Aurelia sp.1 on Skeletonema costatum and Prorocentrum donghaiense. Oceanologia et Limnologia Sinica 43: 446–450. (in Chinese with English abstract).Google Scholar
  31. Zhou, M. J., Z. L. Shen & R. C. Yu, 2008. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Continental Shelf Research 28(12): 1483–1489.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yan-Tao Wang
    • 1
    • 2
  • Shan Zheng
    • 1
    • 2
    • 3
  • Song Sun
    • 1
    • 3
  • Fang Zhang
    • 1
  1. 1.Key Laboratory of Marine Ecology and Environmental Sciences, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Jiaozhou Bay Marine Ecosystem Research Station, Institute of OceanologyChinese Academy of SciencesQingdaoChina

Personalised recommendations