, Volume 754, Issue 1, pp 157–167 | Cite as

The effect of temperature and food supply on the growth and ontogeny of Aurelia sp. 1 ephyrae



Blooms of the scyphozoan jellyfish Aurelia spp. are directly affected by the number, survival, and ontogenetic process of the ephyra stage. To determine the combined effect of temperature and food conditions on the production of ephyrae, the rising- and decreasing-temperature experiment was designed to simulate the warming from spring to summer and the cooling from fall to winter, respectively. Results showed that both temperature and prey concentrations significantly affected the ephyra production. Aurelia sp. 1 strobilation occurred from 8 to 17°C, while 13°C was the optimal temperature for ephyra production. At 8, 10, and 17°C, when the parental polyps had abundant food, the released ephyrae had a larger bell diameter and a better nutritional foundation. Abundant food conditions in the field would therefore elevate ephyrae survival rate, accelerate individual development, and thus ensure the population size of medusae. Our results indicate that a longer spring and a relatively higher zooplankton biomass may increase blooms of Aurelia sp. 1. However, the limited food conditions present in autumn and winter most likely mean that the Aurelia sp. 1 ephyrae released during these seasons are not the main source of the following year’s medusa population.


Aurelia sp. 1 ephyra Temperature Prey concentration Strobilation Ontogeny 



This study was supported by the National Basic Research Program of China (2011CB403604), the National Natural Science Foundation of China (41121064, 41106133), and the National Public S&T Research Funds Projects of the Ocean (201005018).


  1. Arai, M. N., 1988. Interactions of fish and pelagic coelenterates. Canadian Journal of Zoology 66(9): 1913–1927.CrossRefGoogle Scholar
  2. Arai, M. N., 1997. Functional Biology of Scyphozoa. Springer, New York.Google Scholar
  3. Båmstedt, U., J. Lane & M. Martinussen, 1999. Bioenergetics of ephyra larvae of the scyphozoan jellyfish Aurelia aurita in relation to temperature and salinity. Marine Biology 135(1): 89–98.CrossRefGoogle Scholar
  4. Cawood, A. M., 2012. Laboratory and in situ investigations of factors affecting the growth and survivorship of the Scyphozoan jellyfish Aurelia sp 1.  Doctoral Dissertation, University of California, San Diego.Google Scholar
  5. Duarte, C. M., K. A. Pitt, C. H. Lucas, J. E. Purcell, S.-I. Uye, K. Robinson, L. Brotz, M. B. Decker, K. R. Sutherland & A. Malej, 2012. Is global ocean sprawl a cause of jellyfish blooms? Frontiers in Ecology and the Environment 11(2): 91–97.CrossRefGoogle Scholar
  6. Faimali, M., F. Garaventa, V. Piazza, E. Costa, G. Greco, V. Mazzola, M. Beltrandi, E. Bongiovanni, S. Lavorano & G. Gnone, 2013. Ephyra jellyfish as a new model for ecotoxicological bioassays. Marine Environmental Research 93: 93–101.CrossRefPubMedGoogle Scholar
  7. Feitl, K., A. Millett, S. Colin, J. Dabiri & J. Costello, 2009. Functional morphology and fluid interactions during early development of the scyphomedusa Aurelia aurita. The Biological Bulletin 217(3): 283–291.PubMedGoogle Scholar
  8. Hamner, W., R. Gilmer & P. Hamner, 1982. The physical, chemical, and biological characteristics of a stratified, saline, sulfide lake in Palau [Eil Malk Jellyfish Lake; Caroline Islands]. Limnology and Oceanography 27: 896–909.CrossRefGoogle Scholar
  9. Han, C. H. & S. Uye, 2010. Combined effects of food supply and temperature on asexual reproduction and somatic growth of polyps of the common jellyfish Aurelia aurita sl. Plankton and Benthos Research 5(3): 98–105.CrossRefGoogle Scholar
  10. Holst, S., 2012a. Effects of climate warming on strobilation and ephyra production of North Sea scyphozoan jellyfish. Hydrobiologia 690(1): 127–140.CrossRefGoogle Scholar
  11. Holst, S., 2012b. Morphology and development of benthic and pelagic life stages of North Sea jellyfish (Scyphozoa, Cnidaria) with special emphasis on the identification of ephyra stages. Marine Biology 159(12): 2707–2722.CrossRefGoogle Scholar
  12. Huang, X., Y. Zeng, B. Huang & S. Li, 2013. Effect of Alexandrium catenella (Dinophyta) concentration on the behavior and growth of Aurelia sp. ephyrae. Journal of Plankton Research. doi:  10.1093/plankt/fbt103.
  13. Ishii, H. & K. Katsukoshi, 2010. Seasonal and vertical distribution of Aurelia aurita polyps on a pylon in the innermost part of Tokyo Bay. Journal of Oceanography 66(3): 329–336.CrossRefGoogle Scholar
  14. Ishii, H. & H. Shioi, 2003. The effects of environmental light condition on strobilation in Aurelia aurita polyps. Sessile Organisms 20(2): 51–54.CrossRefGoogle Scholar
  15. Ishii, H., T. Ohba & T. Kobayashi, 2008. Effects of low dissolved oxygen on planula settlement, polyp growth and asexual reproduction of Aurelia aurita. Plankton and Benthos Research 3(Supplement): 107–113.CrossRefGoogle Scholar
  16. Janßen, H., C. Augustin, H.-H. Hinrichsen & S. Kube, 2013. Impact of secondary hard substrate on the distribution and abundance of Aurelia aurita in the western Baltic Sea. Marine Pollution Bulletin 75(1): 224–234.CrossRefPubMedGoogle Scholar
  17. Keen, S. & A. Gong, 1989. Genotype and feeding frequency affect clone formation in a marine cnidarian (Aurelia aurita Lamarck 1816). Functional Ecology 3: 735–745.CrossRefGoogle Scholar
  18. Kikkawa, T., Y. Minowa, Y. Nakamura, J. Kita & A. Ishimatsu, 2010. Swimming inhibition by elevated pCO2 in ephyrae of the scyphozoan jellyfish, Aurelia. Plankton and Benthos Research 5(3): 119–122.CrossRefGoogle Scholar
  19. Liu, W. C., W. T. Lo, J. E. Purcell & H. H. Chang, 2009. Effects of temperature and light intensity on asexual reproduction of the scyphozoan, Aurelia aurita (L.) in Taiwan. Hydrobiologia 616(1): 247–258.CrossRefGoogle Scholar
  20. Lucas, C., 1996. Population dynamics of Aurelia aurita (Scyphozoa) from an isolated brackish lake, with particular reference to sexual reproduction. Journal of Plankton Research 18(6): 987–1007.CrossRefGoogle Scholar
  21. Lucas, C. H., 2001. Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451(1): 229–246.CrossRefGoogle Scholar
  22. Malej, A., T. Kogovšek, A. Ramšak, L. Catenacci, D. Bonnet, F. Carcaillet, J. Klein, M. Laabir & F. Rossi, 2012. Blooms and population dynamics of moon jellyfish in the northern Adriatic. CBM-Cahiers de Biologie Marine 53(3): 337.Google Scholar
  23. Miller, M.-E. C. & W. M. Graham, 2012. Environmental evidence that seasonal hypoxia enhances survival and success of jellyfish polyps in the northern Gulf of Mexico. Journal of Experimental Marine Biology and Ecology 432: 113–120.CrossRefGoogle Scholar
  24. Mills, C. E., 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451(1): 55–68.CrossRefGoogle Scholar
  25. Miyake, H., K. Iwao & Y. Kakinuma, 1997. Life history and environment of Aurelia aurita. South Pacific Study 17(2): 273–285.Google Scholar
  26. Nan Wang, Chaolun Li, Yi Liang, Yongqiang Shi & Jingliang Lu, 2014. Prey concentration and temperature effect on budding and strobilation of Aurelia sp.1 polyps. Hydrobiologia. doi: 10.1007/s10750-014-1978-2.
  27. Omori, M., H. Ishii & A. Fujinaga, 1995. Life history strategy of Aurelia aurita (Cnidaria, Scyphomedusae) and its impact on the zooplankton community of Tokyo Bay. ICES Journal of Marine Science: Journal du Conseil 52(3–4): 597–603.CrossRefGoogle Scholar
  28. Parsons, T. & C. Lalli, 2002. Jellyfish population explosions: revisiting a hypothesis of possible causes. La mer 40: 111–121.Google Scholar
  29. Purcell, J. E., 2012. Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Annual Review of Marine Science 4: 209–235.CrossRefPubMedGoogle Scholar
  30. Purcell, J. E., D. L. Breitburg, M. B. Decker, W. M. Graham, M. J. Youngbluth & K. A. Raskoff, 2001. Pelagic cnidarians and ctenophores in low dissolved oxygen environments: a review. In Rabalais, N. N. & R. E. Turner (eds), Coastal Hypoxia: Consequences for Living Resources and Ecosystems. American Geophysical Union, Washington: 77–100.CrossRefGoogle Scholar
  31. Purcell, J. E., S.-I. Uye & W.-T. Lo, 2007. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Marine Ecology Progress Series 350: 153.CrossRefGoogle Scholar
  32. Purcell, J. E., R. A. Hoover & N. T. Schwarck, 2009. Interannual variation of strobilation by the scyphozoan Aurelia labiata in relation to polyp density, temperature, salinity, and light conditions in situ. Marine Ecology Progress Series 375: 139–149.CrossRefGoogle Scholar
  33. Purcell, J. E., D. Atienza, V. Fuentes, A. Olariaga, U. Tilves, C. Colahan & J.-M. Gili, 2012. Temperature effects on asexual reproduction rates of scyphozoan species from the northwest Mediterranean Sea. Hydrobiologia 690(1): 169–180.CrossRefGoogle Scholar
  34. Richardson, A. J., A. Bakun, G. C. Hays & M. J. Gibbons, 2009. The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends in Ecology & Evolution 24(6): 312–322.CrossRefGoogle Scholar
  35. Riisgård, H. U. & C. V. Madsen, 2011. Clearance rates of ephyrae and small medusae of the common jellyfish Aurelia aurita offered different types of prey. Journal of Sea Research 65(1): 51–57.CrossRefGoogle Scholar
  36. Riisgård, H. U., C. Barth-Jensen & C. V. Madsen, 2010. High abundance of the jellyfish Aurelia aurita excludes the invasive ctenophore Mnemiopsis leidyi to establish in a shallow cove (Kertinge Nor, Denmark). Aquatic Invasions 5(4): 347–356.CrossRefGoogle Scholar
  37. Robinson, K. L. & W. M. Graham, 2013. Long-term change in the abundances of northern Gulf of Mexico scyphomedusae Chrysaora sp. and Aurelia spp. with links to climate variability. Limnology and Oceanography 58(1): 235–253.CrossRefGoogle Scholar
  38. Suchman, C. L., R. D. Brodeur, E. A. Daly & R. L. Emmett, 2012. Large medusae in surface waters of the Northern California Current: variability in relation to environmental conditions. Hydrobiologia 690(1): 113–125.CrossRefGoogle Scholar
  39. Sullivan, B., J. Garcia & G. Klein-MacPhee, 1994. Prey selection by the scyphomedusan predator Aurelia aurita. Marine Biology 121(2): 335–341.CrossRefGoogle Scholar
  40. Uye, S.-I., 2011. Human forcing of the copepod–fish–jellyfish triangular trophic relationship. Hydrobiologia 666(1): 71–83.CrossRefGoogle Scholar
  41. Wan, A.-Y. & G.-T. Zhang, 2012. Annual occurrence of moon jellyfish Aurella sp. 1 in the Jiaozhou Bay and its impacts on zooplankton community. Oceanologia et Limnologia Sinica 43(3): 494–501 (in Chinese).Google Scholar
  42. Winans, A. K. & J. E. Purcell, 2010. Effects of pH on asexual reproduction and statolith formation of the scyphozoan, Aurelia labiata. Hydrobiologia 645(1): 39–52.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Key Laboratory of Marine Ecology and Environmental Sciences, Institute of OceanologyChinese Academy of SciencesQingdaoPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations