Skip to main content
Log in

The importance of dissolved N:P ratios on mayfly (Baetis spp.) growth in high-nutrient detritus-based streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The concept of ecological stoichiometry has been useful for understanding nutrient dynamics in aquatic food webs; however, the majority of studies have focused on autotrophic systems, leaving detritus-based food webs largely understudied. In addition, most detritus-based studies have explored enrichment in high-gradient, low-nutrient systems, despite the fact that many of the streams most likely to face enrichment (those surrounded by agriculture) are low-gradient and contain inherently higher dissolved nutrient concentrations due to differences in soil type, geomorphology, and atmospheric deposition. Constraints on consumer growth due to consumer-resource imbalances have been documented in these low-nutrient streams, but the extent to which consumer growth may be limited in higher-nutrient, detritus-based streams is unknown. We investigated the impact of dissolved nutrients (N and P) on mayfly growth, using artificial streams simulating a high-nutrient detritus-based system. Mayflies were reared and sampled under two total nutrient concentrations, one meant to mimic a more natural undisturbed (ambient) watershed and one to mimic a disturbed (enriched) watershed. Under each of these conditions two N:P ratios (low and high) were tested. The low N:P treatments produced higher mayfly growth under both ambient and enriched conditions, showing that nutrient limitation can occur even in high-nutrient streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acharya, K., M. Kyle & J. J. Elser, 2004. Biological stoichiometry of Daphnia growth: an ecophysiological test of the growth rate hypothesis. Limnology and Oceanography 49: 656–665.

    Article  CAS  Google Scholar 

  • Allan, J. D., 1995. Stream ecology: Structure and Function of Running Waters. Kluwer Academic Publishers, Dordrecht.

    Book  Google Scholar 

  • Anderson, T. R., D. O. Hessen, J. J. Elser & J. Urabe, 2005. Metabolic stoichiometry and the fate of excess carbon and nutrients in consumers. The American Naturalist 165: 1–15.

    Article  PubMed  Google Scholar 

  • APHA, AWA, WPCF. 1998. Standard methods for the examination of water and wastewater, American Public Health Association, Washington, D.C.

  • Behmer, S. T., 2009. Insect herbivore nutrient regulation. Annual Review of Entomology 54: 165–187.

    Article  CAS  PubMed  Google Scholar 

  • Benke, A. C. & D. I. Jacobi, 1986. Growth rates of mayflies in a subtropical river and their implications for secondary production. Journal of the North American Benthological Society 5: 107–114.

    Article  Google Scholar 

  • Benke, A. C., A. D. Huryn, L. A. Smock & J. B. Wallace, 1999. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society 18: 308–343.

    Article  Google Scholar 

  • Boersma, M. & C. Kreutzer, 2002. Life at the edge: is food quality really of minor importance at low quantities? Ecology 83: 2552–2561.

    Article  Google Scholar 

  • Brittain, J. E., 1975. The life cycle of Baetis macani Kimmins (Ephemeroptera) in a Norwegian mountain biotype. Entomologica Scandinavica 6: 47–51.

    Article  Google Scholar 

  • Brittain, J. E., 1982. Biology of mayflies. Annual Review of Entomology 27: 119–147.

    Article  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639.

    Article  Google Scholar 

  • Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley & V. H. Smith, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.

    Article  Google Scholar 

  • Carpenter, S. R., J. J. Cole, J. R. Hodgson, J. F. Kitchell, M. L. Pace, D. Bade, K. L. Cottingham, T. E. Essington, J. N. Houser & D. E. Schindler, 2001. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecological Monographs 71: 163–186.

    Article  Google Scholar 

  • Clark, G. M., D. K. Mueller & M. A. Mast, 2000. Nutrient concentrations and yields in undeveloped stream basins of the United States. Journal of American Water Resources Association 36: 849–860.

  • Craig, D. A. 1993. Hydrodynamic considerations in artificial stream research. In Lamberti, G. A. & A. D. Steinman (eds), Research in artificial streams: applications, uses, and abuses. Journal of the North American Benthological Society 12:313–384.

  • Cross, W. F., J. P. Benstead, A. D. Rosemond & J. B. Wallace, 2003. Consumer-resource stoichiometry in detritus-based streams. Ecology Letters 6: 721–732.

    Article  Google Scholar 

  • Cross, W. F., J. B. Wallace, A. D. Rosemond & S. L. Eggert, 2006. Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem. Ecology 87: 1556–1565.

    Article  CAS  PubMed  Google Scholar 

  • Cross, W. F., J. B. Wallace & A. D. Rosemond, 2007. Nutrient enrichment reduces constraints on material flows in a detritus-based food web. Ecology 88: 2563–2575.

    Article  PubMed  Google Scholar 

  • Cruz-Rivera, E. & M. E. Hay, 2000. Can quantity replace quality? Food choice, compensatory feeding, and fitness of marine mesograzers. Ecology 81: 201–219.

    Article  Google Scholar 

  • Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecological Systems 10: 147–172.

    Article  Google Scholar 

  • Cummins, K. W., M. A. Wilzbach, D. M. Gates, J. B. Perry & W. B. Taliaferro, 1989. Shredders and riparian vegetation. BioScience 39: 24–30.

    Article  Google Scholar 

  • Elser, J. J., W. F. Fagan, R. F. Denno, D. R. Dobberfuhl, A. Folarin, A. Huberty, S. Interlandi, S. S. Kilham, E. McCauley, K. L. Schultz, E. H. Siemann & R. W. Sterner, 2000a. Nutritional constraints in terrestrial and freshwater food webs. Nature 408: 578–580.

    Article  CAS  PubMed  Google Scholar 

  • Elser, J. J., R. W. Sterner, E. Gorokhova, W. F. Fagan, T. A. Markow, J. B. Cotner, J. F. Harrison, S. E. Hobbie, G. M. Odell & L. J. Weider, 2000b. Biological stoichometry from genes to ecosystems. Ecology Letters 3: 540–550.

    Article  Google Scholar 

  • Elser, J. J., K. Acharya, M. Kyle, J. Cotner, W. Makino, T. Markow, T. Watts, S. Hobbie, W. Fagan, J. Schade, J. Hood & R. W. Sterner, 2003. Growth rate- stoichiometry couplings in diversie biota. Ecology Letters 6: 936–943.

    Article  Google Scholar 

  • Elser, J. J., M. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine, and terrestrial ecosystems. Ecology Letters 10: 1–8.

    Article  Google Scholar 

  • Fink, P. & E. Von Elert, 2006. Physiological responses to stoichiometric constraints: nutrient limitation and compensatory feeding in a freshwater snail. OIKOS 115: 484–494.

    Article  CAS  Google Scholar 

  • Francoeur, S. N., 2001. Meta-analysis of lotic nutrient amendment experiments: Detecting and quantifying subtle responses. Journal of the North American Bethological Soceity 20: 358–368.

    Article  Google Scholar 

  • Frost, P. C. & J. J. Elser, 2002. Growth responses of littoral mayflies to the phosphorus content of their food. Ecology Letters 5: 232–240.

    Article  Google Scholar 

  • Frost, P. C., M. A. Evans-White, Z. V. Finkel, T. C. Jensen & V. Matzek, 2005. Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. OIKOS 109: 18–28.

    Article  Google Scholar 

  • Griffiths, N. A., J. L. Tank, T. V. Royer, E. J. Rosi-Marshall, M. R. Whiles, C. P. Chambers, T. C. Frauendorf & M. A. Evans-White, 2009. Rapid decomposition of maize detritus in agricultural headwater streams. Ecological Applications 19: 133–142.  

  • Gulis, V. & K. Suberkropp, 2002. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwater Biology 48(123–134): 68.

    Google Scholar 

  • Hershey, A. E. & G. A. Lamberti, 1998. Stream macroinvertebrate assemblages. In Naiman, R. J. & R. E. Bilby (eds), River Ecology and Management: Lessons from the Pacific Coastal Ecoregion. Springer-Verlag, New York: 169–199.

    Chapter  Google Scholar 

  • Hesson, D. O., P. J. FÆrøvig & T. Andersen, 2002. Light, nutrients, and P: C ratios in algae: Grazer performance related to food quality and quantity. Ecology 83: 1886–1898.

    Article  Google Scholar 

  • Hesson, D. O., G. I. Ǻgren, T. R. Anderson, J. J. Elser & P. C. de Ruiter, 2004. Carbon sequestration in ecosystems: the of stoichiometry. Ecology 85: 1179–1192.

    Article  Google Scholar 

  • Hladyz, S., M. O. Gessner, P. S. Giller, J. Pozo & G. Woodward, 2009. Resource quality and stoichiometric constraints on stream ecosystem functioning. Freshwater Biology 54: 957–970.

  • Humpesch, U. H., 1979. Life cycles and growth rates of Baetis spp. (Ephemeroptera: Baetidae) in the laboratory and in two stony streams in Austria. Freshwater Biology 9: 467–479.

    Article  Google Scholar 

  • Jeppesen, E., M. SØndergaard, J. P. Jensen, K. E. Havens, O. Anneville, L. Carvalho & M. Winder, 2005. Lake responses to reduced nutrient loading: an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.

    Article  CAS  Google Scholar 

  • Johnson, L., C. Richards, G. Host & J. Arthur, 1997. Landscape influences on water chemistry in Midwestern stream ecosystems. Freshwater Biology 37: 193–208.  

  • Liess, A., S. Drakare & M. Kahlert, 2009. Atmospheric nitrogen-deposition may intensify phosphorus limitation of shallow epilithic periphyton in unproductive lakes. Freshwater Biology 54: 1759–1773.

    Article  CAS  Google Scholar 

  • Minnesota Pollution Control Agency Website, 2008. Environmental data access: Water quality. http://www.pca.state.mn.us. Accessed January 2008.

  • Nowell, A. R. M. & P. A. Jumars, 1984. Flow environments of the aquatic benthos. Annual Review of Ecological Systems 15: 303–328.

    Article  Google Scholar 

  • Paul, M. J. & J. L. Meyer, 2001. Streams in the urban landscape. Annual Review of Ecological Systems 32: 333–365.

    Article  Google Scholar 

  • Plath, K. & M. Boersma, 2001. Mineral limitation of zooplankton: stoichiometric constraints and optimal foraging. Ecology 82: 1260–1269.

    Article  Google Scholar 

  • Ptacnik, R., G. D. Jenerette, A. M. Verschoor, A. F. Huberty, A. G. Solimini & J. D. Brookes, 2005. Applications of ecological stoichiometry for sustainable acquisition of ecosystem services. Oikos 109: 52–62.

    Article  Google Scholar 

  • Rothlisberger, J. D., M. A. Baker & P. C. Frost, 2008. Effects of periphyton stoichiometry on mayfly excretion rates and nutrient ratios. Journal of the North American Benthological Society 27: 497–508.

    Article  Google Scholar 

  • Shepard, R. B. & G. W. Minshall, 2006. Role of benthic insect feces in a Rocky Mountain stream: fecal production and support of consumer growth. Ecography 7: 119–127.

    Article  Google Scholar 

  • Statzner, B., J. A. Gore & V. H. Resh, 1988. Hydraulic stream ecology: Observed patterns and potential applications. Journal of the North American Benthological Society 7: 307–360.

    Article  Google Scholar 

  • Stelzer, R. S. & G. A. Lamberti, 2001. Effects of N:P ratio and total concentration on stream periphyton community structure, biomass, and elemental composition. Limnology and Oceanography 46: 356–367.

    Article  Google Scholar 

  • Sterner, R. W., 1997. Modelling interactions of food quality and quantity in homeostatic consumers. Freshwater Biology 38: 473–481.

    Article  Google Scholar 

  • Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.

    Google Scholar 

  • Sterner, R. W. & N. B. George, 2000. Carbon, nitrogen, and phosphorus stoichiometry of cyprinid fishes. Ecology 81: 127–140.

    Article  Google Scholar 

  • Sterner, R. W. & J. L. Robinson, 1994. Thresholds for growth in Daphnia magna with high and low phosphorus diets. Limnology and Oceanography 39: 1228–1232.

    Article  Google Scholar 

  • Urabe, J. & Y. Watanabe, 1993. Implications of sestonic elemental ratio in zooplankton ecology. Limnology and Oceanography 38: 1337–1340.

    Article  CAS  Google Scholar 

  • Vrede, T., D. R. Dobberfuhl, S. A. L. M. Kooijman & J. J. Elser, 2004. Fundamental connections among organism C:N:P stoichiometry, macromolecular composition, and growth. Ecology 85: 1217–1229.

    Article  Google Scholar 

  • Walsh, C. J., 2005. The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthological Society 24: 706–723.

    Article  Google Scholar 

  • Walve, J. & U. Larsson, 1999. Carbon, nitrogen, and phosphorus stoichiometry of crustacean zooplankton in the Baltic Sea: Implications for nutrient cycling. Journal of Plankton Research 21: 2309–2321.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Juan Fedele and Heiko Schoenfuss for their help with the artificial stream design and hydrodynamics, Matthew Julius and Josh Stepanek for their assistance with the water quality assays, Joel Chirhart for his help with selecting the reference stream, and William Cook and Hui Xu for their input. We also thank Greg Sword for his review comments. In addition, we acknowledge the School of Graduate Studies at St. Cloud State University for helping to fund this project through support from the Graduate Studies Research Award. A.D. Kay was supported by NSF grant DEB-0842038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrie A. Deans.

Additional information

Handling editor: Sonja Stendera

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deans, C.A., Behmer, S.T., Kay, A. et al. The importance of dissolved N:P ratios on mayfly (Baetis spp.) growth in high-nutrient detritus-based streams. Hydrobiologia 742, 15–26 (2015). https://doi.org/10.1007/s10750-014-1958-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1958-6

Keywords

Navigation