Advertisement

Hydrobiologia

, Volume 742, Issue 1, pp 15–26 | Cite as

The importance of dissolved N:P ratios on mayfly (Baetis spp.) growth in high-nutrient detritus-based streams

  • Carrie A. Deans
  • Spencer T. Behmer
  • Adam Kay
  • Neal Voelz
Primary Research Paper

Abstract

The concept of ecological stoichiometry has been useful for understanding nutrient dynamics in aquatic food webs; however, the majority of studies have focused on autotrophic systems, leaving detritus-based food webs largely understudied. In addition, most detritus-based studies have explored enrichment in high-gradient, low-nutrient systems, despite the fact that many of the streams most likely to face enrichment (those surrounded by agriculture) are low-gradient and contain inherently higher dissolved nutrient concentrations due to differences in soil type, geomorphology, and atmospheric deposition. Constraints on consumer growth due to consumer-resource imbalances have been documented in these low-nutrient streams, but the extent to which consumer growth may be limited in higher-nutrient, detritus-based streams is unknown. We investigated the impact of dissolved nutrients (N and P) on mayfly growth, using artificial streams simulating a high-nutrient detritus-based system. Mayflies were reared and sampled under two total nutrient concentrations, one meant to mimic a more natural undisturbed (ambient) watershed and one to mimic a disturbed (enriched) watershed. Under each of these conditions two N:P ratios (low and high) were tested. The low N:P treatments produced higher mayfly growth under both ambient and enriched conditions, showing that nutrient limitation can occur even in high-nutrient streams.

Keywords

Ecological stoichiometry Lotic Aquatic invertebrates Detritus Enrichment 

Notes

Acknowledgements

We would like to thank Juan Fedele and Heiko Schoenfuss for their help with the artificial stream design and hydrodynamics, Matthew Julius and Josh Stepanek for their assistance with the water quality assays, Joel Chirhart for his help with selecting the reference stream, and William Cook and Hui Xu for their input. We also thank Greg Sword for his review comments. In addition, we acknowledge the School of Graduate Studies at St. Cloud State University for helping to fund this project through support from the Graduate Studies Research Award. A.D. Kay was supported by NSF grant DEB-0842038.

References

  1. Acharya, K., M. Kyle & J. J. Elser, 2004. Biological stoichiometry of Daphnia growth: an ecophysiological test of the growth rate hypothesis. Limnology and Oceanography 49: 656–665.CrossRefGoogle Scholar
  2. Allan, J. D., 1995. Stream ecology: Structure and Function of Running Waters. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
  3. Anderson, T. R., D. O. Hessen, J. J. Elser & J. Urabe, 2005. Metabolic stoichiometry and the fate of excess carbon and nutrients in consumers. The American Naturalist 165: 1–15.PubMedCrossRefGoogle Scholar
  4. APHA, AWA, WPCF. 1998. Standard methods for the examination of water and wastewater, American Public Health Association, Washington, D.C.Google Scholar
  5. Behmer, S. T., 2009. Insect herbivore nutrient regulation. Annual Review of Entomology 54: 165–187.PubMedCrossRefGoogle Scholar
  6. Benke, A. C. & D. I. Jacobi, 1986. Growth rates of mayflies in a subtropical river and their implications for secondary production. Journal of the North American Benthological Society 5: 107–114.CrossRefGoogle Scholar
  7. Benke, A. C., A. D. Huryn, L. A. Smock & J. B. Wallace, 1999. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society 18: 308–343.CrossRefGoogle Scholar
  8. Boersma, M. & C. Kreutzer, 2002. Life at the edge: is food quality really of minor importance at low quantities? Ecology 83: 2552–2561.CrossRefGoogle Scholar
  9. Brittain, J. E., 1975. The life cycle of Baetis macani Kimmins (Ephemeroptera) in a Norwegian mountain biotype. Entomologica Scandinavica 6: 47–51.CrossRefGoogle Scholar
  10. Brittain, J. E., 1982. Biology of mayflies. Annual Review of Entomology 27: 119–147.CrossRefGoogle Scholar
  11. Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639.CrossRefGoogle Scholar
  12. Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley & V. H. Smith, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.CrossRefGoogle Scholar
  13. Carpenter, S. R., J. J. Cole, J. R. Hodgson, J. F. Kitchell, M. L. Pace, D. Bade, K. L. Cottingham, T. E. Essington, J. N. Houser & D. E. Schindler, 2001. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecological Monographs 71: 163–186.CrossRefGoogle Scholar
  14. Clark, G. M., D. K. Mueller & M. A. Mast, 2000. Nutrient concentrations and yields in undeveloped stream basins of the United States. Journal of American Water Resources Association 36: 849–860.Google Scholar
  15. Craig, D. A. 1993. Hydrodynamic considerations in artificial stream research. In Lamberti, G. A. & A. D. Steinman (eds), Research in artificial streams: applications, uses, and abuses. Journal of the North American Benthological Society 12:313–384.Google Scholar
  16. Cross, W. F., J. P. Benstead, A. D. Rosemond & J. B. Wallace, 2003. Consumer-resource stoichiometry in detritus-based streams. Ecology Letters 6: 721–732.CrossRefGoogle Scholar
  17. Cross, W. F., J. B. Wallace, A. D. Rosemond & S. L. Eggert, 2006. Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem. Ecology 87: 1556–1565.PubMedCrossRefGoogle Scholar
  18. Cross, W. F., J. B. Wallace & A. D. Rosemond, 2007. Nutrient enrichment reduces constraints on material flows in a detritus-based food web. Ecology 88: 2563–2575.PubMedCrossRefGoogle Scholar
  19. Cruz-Rivera, E. & M. E. Hay, 2000. Can quantity replace quality? Food choice, compensatory feeding, and fitness of marine mesograzers. Ecology 81: 201–219.CrossRefGoogle Scholar
  20. Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecological Systems 10: 147–172.CrossRefGoogle Scholar
  21. Cummins, K. W., M. A. Wilzbach, D. M. Gates, J. B. Perry & W. B. Taliaferro, 1989. Shredders and riparian vegetation. BioScience 39: 24–30.CrossRefGoogle Scholar
  22. Elser, J. J., W. F. Fagan, R. F. Denno, D. R. Dobberfuhl, A. Folarin, A. Huberty, S. Interlandi, S. S. Kilham, E. McCauley, K. L. Schultz, E. H. Siemann & R. W. Sterner, 2000a. Nutritional constraints in terrestrial and freshwater food webs. Nature 408: 578–580.PubMedCrossRefGoogle Scholar
  23. Elser, J. J., R. W. Sterner, E. Gorokhova, W. F. Fagan, T. A. Markow, J. B. Cotner, J. F. Harrison, S. E. Hobbie, G. M. Odell & L. J. Weider, 2000b. Biological stoichometry from genes to ecosystems. Ecology Letters 3: 540–550.CrossRefGoogle Scholar
  24. Elser, J. J., K. Acharya, M. Kyle, J. Cotner, W. Makino, T. Markow, T. Watts, S. Hobbie, W. Fagan, J. Schade, J. Hood & R. W. Sterner, 2003. Growth rate- stoichiometry couplings in diversie biota. Ecology Letters 6: 936–943.CrossRefGoogle Scholar
  25. Elser, J. J., M. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine, and terrestrial ecosystems. Ecology Letters 10: 1–8.CrossRefGoogle Scholar
  26. Fink, P. & E. Von Elert, 2006. Physiological responses to stoichiometric constraints: nutrient limitation and compensatory feeding in a freshwater snail. OIKOS 115: 484–494.CrossRefGoogle Scholar
  27. Francoeur, S. N., 2001. Meta-analysis of lotic nutrient amendment experiments: Detecting and quantifying subtle responses. Journal of the North American Bethological Soceity 20: 358–368.CrossRefGoogle Scholar
  28. Frost, P. C. & J. J. Elser, 2002. Growth responses of littoral mayflies to the phosphorus content of their food. Ecology Letters 5: 232–240.CrossRefGoogle Scholar
  29. Frost, P. C., M. A. Evans-White, Z. V. Finkel, T. C. Jensen & V. Matzek, 2005. Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. OIKOS 109: 18–28.CrossRefGoogle Scholar
  30. Griffiths, N. A., J. L. Tank, T. V. Royer, E. J. Rosi-Marshall, M. R. Whiles, C. P. Chambers, T. C. Frauendorf & M. A. Evans-White, 2009. Rapid decomposition of maize detritus in agricultural headwater streams. Ecological Applications 19: 133–142.  Google Scholar
  31. Gulis, V. & K. Suberkropp, 2002. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwater Biology 48(123–134): 68.Google Scholar
  32. Hershey, A. E. & G. A. Lamberti, 1998. Stream macroinvertebrate assemblages. In Naiman, R. J. & R. E. Bilby (eds), River Ecology and Management: Lessons from the Pacific Coastal Ecoregion. Springer-Verlag, New York: 169–199.CrossRefGoogle Scholar
  33. Hesson, D. O., P. J. FÆrøvig & T. Andersen, 2002. Light, nutrients, and P: C ratios in algae: Grazer performance related to food quality and quantity. Ecology 83: 1886–1898.CrossRefGoogle Scholar
  34. Hesson, D. O., G. I. Ǻgren, T. R. Anderson, J. J. Elser & P. C. de Ruiter, 2004. Carbon sequestration in ecosystems: the of stoichiometry. Ecology 85: 1179–1192.CrossRefGoogle Scholar
  35. Hladyz, S., M. O. Gessner, P. S. Giller, J. Pozo & G. Woodward, 2009. Resource quality and stoichiometric constraints on stream ecosystem functioning. Freshwater Biology 54: 957–970.Google Scholar
  36. Humpesch, U. H., 1979. Life cycles and growth rates of Baetis spp. (Ephemeroptera: Baetidae) in the laboratory and in two stony streams in Austria. Freshwater Biology 9: 467–479.CrossRefGoogle Scholar
  37. Jeppesen, E., M. SØndergaard, J. P. Jensen, K. E. Havens, O. Anneville, L. Carvalho & M. Winder, 2005. Lake responses to reduced nutrient loading: an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.CrossRefGoogle Scholar
  38. Johnson, L., C. Richards, G. Host & J. Arthur, 1997. Landscape influences on water chemistry in Midwestern stream ecosystems. Freshwater Biology 37: 193–208.  Google Scholar
  39. Liess, A., S. Drakare & M. Kahlert, 2009. Atmospheric nitrogen-deposition may intensify phosphorus limitation of shallow epilithic periphyton in unproductive lakes. Freshwater Biology 54: 1759–1773.CrossRefGoogle Scholar
  40. Minnesota Pollution Control Agency Website, 2008. Environmental data access: Water quality. http://www.pca.state.mn.us. Accessed January 2008.
  41. Nowell, A. R. M. & P. A. Jumars, 1984. Flow environments of the aquatic benthos. Annual Review of Ecological Systems 15: 303–328.CrossRefGoogle Scholar
  42. Paul, M. J. & J. L. Meyer, 2001. Streams in the urban landscape. Annual Review of Ecological Systems 32: 333–365.CrossRefGoogle Scholar
  43. Plath, K. & M. Boersma, 2001. Mineral limitation of zooplankton: stoichiometric constraints and optimal foraging. Ecology 82: 1260–1269.CrossRefGoogle Scholar
  44. Ptacnik, R., G. D. Jenerette, A. M. Verschoor, A. F. Huberty, A. G. Solimini & J. D. Brookes, 2005. Applications of ecological stoichiometry for sustainable acquisition of ecosystem services. Oikos 109: 52–62.CrossRefGoogle Scholar
  45. Rothlisberger, J. D., M. A. Baker & P. C. Frost, 2008. Effects of periphyton stoichiometry on mayfly excretion rates and nutrient ratios. Journal of the North American Benthological Society 27: 497–508.CrossRefGoogle Scholar
  46. Shepard, R. B. & G. W. Minshall, 2006. Role of benthic insect feces in a Rocky Mountain stream: fecal production and support of consumer growth. Ecography 7: 119–127.CrossRefGoogle Scholar
  47. Statzner, B., J. A. Gore & V. H. Resh, 1988. Hydraulic stream ecology: Observed patterns and potential applications. Journal of the North American Benthological Society 7: 307–360.CrossRefGoogle Scholar
  48. Stelzer, R. S. & G. A. Lamberti, 2001. Effects of N:P ratio and total concentration on stream periphyton community structure, biomass, and elemental composition. Limnology and Oceanography 46: 356–367.CrossRefGoogle Scholar
  49. Sterner, R. W., 1997. Modelling interactions of food quality and quantity in homeostatic consumers. Freshwater Biology 38: 473–481.CrossRefGoogle Scholar
  50. Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.Google Scholar
  51. Sterner, R. W. & N. B. George, 2000. Carbon, nitrogen, and phosphorus stoichiometry of cyprinid fishes. Ecology 81: 127–140.CrossRefGoogle Scholar
  52. Sterner, R. W. & J. L. Robinson, 1994. Thresholds for growth in Daphnia magna with high and low phosphorus diets. Limnology and Oceanography 39: 1228–1232.CrossRefGoogle Scholar
  53. Urabe, J. & Y. Watanabe, 1993. Implications of sestonic elemental ratio in zooplankton ecology. Limnology and Oceanography 38: 1337–1340.CrossRefGoogle Scholar
  54. Vrede, T., D. R. Dobberfuhl, S. A. L. M. Kooijman & J. J. Elser, 2004. Fundamental connections among organism C:N:P stoichiometry, macromolecular composition, and growth. Ecology 85: 1217–1229.CrossRefGoogle Scholar
  55. Walsh, C. J., 2005. The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthological Society 24: 706–723.CrossRefGoogle Scholar
  56. Walve, J. & U. Larsson, 1999. Carbon, nitrogen, and phosphorus stoichiometry of crustacean zooplankton in the Baltic Sea: Implications for nutrient cycling. Journal of Plankton Research 21: 2309–2321.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Carrie A. Deans
    • 1
    • 2
  • Spencer T. Behmer
    • 1
  • Adam Kay
    • 3
  • Neal Voelz
    • 2
  1. 1.Department of EntomologyTexas A&M UniversityCollege StationUSA
  2. 2.Department of BiologySt. Cloud State UniversitySt. CloudUSA
  3. 3.Department of BiologyUniversity of St. ThomasSt. PaulUSA

Personalised recommendations