, Volume 740, Issue 1, pp 13–24 | Cite as

Regime shifts between free-floating plants and phytoplankton: a review

Review Paper


Field studies evidence shifts between phytoplankton and free-floating plant regimes; yet, it is unclear what drives these shifts and if they are critical transitions (alternative stable states). In this review, we synthesized field and experimental data on free-floating plants (of varying size and phylogenies) and phytoplankton regimes, to assess the effects of these producers on the environment. Nutrient-rich environments promote free-floating plants dominance—regardless of life form—which causes dark and anoxic environments, and nutrient release from sediments. This reinforces free-floating plants dominance, but controls phytoplankton biomass by strong shading (despite high nutrients and low grazing). Phytoplankton dominance renders turbid and oxygen-rich (when producing) environments. We also searched for case studies of regime shifts for free-floating plants and phytoplankton dominance. Most studies showed that when free-floating plants dominance was interrupted, phytoplankton biomass (usually Cyanobacteria) rose steeply. Likewise, when phytoplankton-dominated, the development of dense mats of free-floating plants covers usually controlled phytoplankton. Field evidence that suggests critical transitions include abrupt regime transitions in time and space; yet, evidence including indoor controlled experiments and mathematical models is needed for conclusive evidence of alternative stable states to be drawn.


Phytoplankton Free-floating plants Alternative stable states Regime shifts 



We are grateful to Dr. Sigrid Smith and Dr. Mariana Meerhoff for their helpful comments on earlier drafts of the manuscript, and to Dr. Jarad Mellard for linguistic assistance. This work was financially supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET PIP5355), Universidad de Buenos Aires (UBACYT X815) and Agencia Nacional de Promoción Científica y Tecnológica (PICT 12332, 536). We would like to thank the Managing and Subject Editor, and reviewers for their comments; they have substantially improved our manuscript.


  1. Abdel-Tawwab, M., 1998. Ecophysiological studies on Azolla plant in relation to phytoplankton and pond fish production. PhD Thesis, Cairo University, Cairo.Google Scholar
  2. Abdel-Tawwab, M., 2006. Effect of free-floating macrophyte, Azolla pinnata, on water physico-chemistry, primary productivity, and the production of Nile Tilapia, Oreochromis niloticus (L.), and common carp, Cyprinus carpio L., in fertilized earthen ponds. Journal of Applied Aquaculture 18: 21–41.CrossRefGoogle Scholar
  3. Allende, L., G. Tell, H. Zagarese, A. Torremorell, G. Perez, J. Bustingorry, R. Escaray & I. Izaguirre, 2009. Phytoplantkon and primary production in clear-vegetated, inorganic-turbid, and algal-turbid shallow lakes from the pampa plain (Argentina). Hydrobiolgia 624: 45–60.CrossRefGoogle Scholar
  4. Ayala, R., F. Acosta, W. M. Mooij, D. Rejas & P. A. Van Damme, 2007. Management of Laguna Alalay: a case study of lake restoration in Andean Valleys in Bolivia. Aquatic Ecology 41: 621–630.CrossRefGoogle Scholar
  5. Beisner, B. E., D. T. Haydon & K. Cuddington, 2003. Alternative stable states in ecology. Frontiers in Ecology and the Environment 1: 376–382.CrossRefGoogle Scholar
  6. Belanger, T. V., 1981. Benthic oxygen demand in Lake Apopka, Florida. Water Research 15: 267–274.CrossRefGoogle Scholar
  7. Beutel, M. W., 2006. Inhibition of ammonia release from anoxic profundal sediments in lakes using hypolimnetic oxygenation. Ecological Engineering 28: 271–279.CrossRefGoogle Scholar
  8. Bianchini Junior, I., 2003. Modelos de crecimiento e decomposição de macrófitas acuáticas. In Thomaz, S. M. & M. L. Bini (eds), Ecologia e manejo de macrófitas acuáticas. EDUEM, Maringá: 85–126.Google Scholar
  9. Bicudo, D. D. C., B. M. Fonseca, L. M. Bini, L. O. Crossetti, D. E. D. M. Bicudo & J. Araujo, 2007. Undesirable side-effects of water hyacinth control in a shallow tropical reservoir. Freshwater Biology 52: 1120–1133.CrossRefGoogle Scholar
  10. Boedeltje, G., A. J. P. Smolders, L. P. M. Lamers & J. G. M. Roelofs, 2005. Interactions between sediment propagule banks and sediment nutrient fluxes explain floating plant dominance in stagnant shallow waters. Archiv für Hydrobiologie 162: 349–362.CrossRefGoogle Scholar
  11. Bornette, G. & S. Puijalon, 2011. Response of aquatic plants to abiotic factors: a review. Aquatic Science 73: 1–14.CrossRefGoogle Scholar
  12. Connell, J. H. & W. P. Sousa, 1983. On the evidence needed to judge ecological stability or persistence. The American Naturalist 121: 789–824.CrossRefGoogle Scholar
  13. Crossetti, L. O., E. de M. Bicudo & I. O’Farrell, 2008. Adaptations in phytoplankton life strategies to imposed change in a shallow urban tropical eutrophic reservoir, Garças Reservoir, over 8 years. Hydrobiologia 614: 91–105.CrossRefGoogle Scholar
  14. de Tezanos Pinto, P. & E. Litchman, 2010. Interactive effects of N:P ratios and light on nitrogen-fixer abundance. Oikos 119: 567–575.CrossRefGoogle Scholar
  15. de Tezanos Pinto, P., L. Allende & I. O’Farrell, 2007. Influence of free-floating plants on the structure of a natural phytoplankton assemblage: an experimental approach. Journal of Plankton Research 29: 47–56.CrossRefGoogle Scholar
  16. Dubinsky, Z. & N. Stambler, 2009. Photoacclimation processes in phytoplankton: mechanisms, consequences, and applications. Aquatic Microbial Ecology 56: 163–176.CrossRefGoogle Scholar
  17. Feuchtmayr, H., R. Moran, K. Hatton, L. Connor, T. Heyes, B. Moss, I. Harvey & D. Atkinson, 2009. Global warming and eutrophication: effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosmos. Journal of Applied Ecology 46: 713–723.CrossRefGoogle Scholar
  18. Fontanarrosa, M. S., G. Chaparro, P. de Tezanos Pinto, P. Rodríguez & I. O’Farrell, 2010. Zooplankton response to the environmental conditions engineered by free-floating plants. Hydrobiologia 646: 231–242.CrossRefGoogle Scholar
  19. Gopal, B. & U. Goel, 1993. Competition and allelopathy in aquatic plant communities. The Botanical Review 59: 156–186.CrossRefGoogle Scholar
  20. Hamilton, S. K., S. J. Sippel & J. M. Melack, 1995. Oxygen depletion and dioxide and methane production in waters of the Pantanal wetland of Brasil. Biogeochemestry 30: 115–141.Google Scholar
  21. Henry-Silva, G. G., A. F. M. Camargo & M. M. Pezzato, 2008. Growth of free-floating macrophytes in different concentrations of nutrients. Hydrobiologia 610: 153–160.CrossRefGoogle Scholar
  22. Ibelings, B. W., R. Portielje, E. H. R. R. Lammens, R. Noordhuis, M. S. Van den Berg, W. Joosse & M. L. Meijer, 2007. Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: Lake Veluwe as a case study. Ecosystems 10: 4–16.CrossRefGoogle Scholar
  23. Iglesias, C., N. Mazzeo, G. Goyenola, C. Fosalba, F. Teixeira de Mello, S. García & E. Jeppesen, 2008. Field and experimental evidence of the effect of Jenynsia multidentata, a small omnivorous-planktivous fish, on the size distribution of zooplankton in subtropical lakes. Freshwater Biology 53: 1797–1807.CrossRefGoogle Scholar
  24. Izaguirre, I., I. O’Farrell, F. Unrein, R. Sinistro, M. Dos Santos Afonso & G. Tell, 2004. Algal assemblages across a wetland, from a shallow lake to relictual oxbow lakes (Lower Paraná River, South America). Hydrobiologia 511: 25–36.CrossRefGoogle Scholar
  25. Izaguirre, I., H. Pizarro, P. de Tezanos Pinto, P. Rodríguez, I. O’Farrell, F. Unrein & J. M. Gasol, 2010. Macrophyte influence on the structure and productivity of photosynthetic picoplankton in wetlands. Journal of Plankton Research 32: 221–238.CrossRefGoogle Scholar
  26. Izaguirre, I., R. Sinistro, M. R. Schiaffino, M. L. Sánchez, F. Unrein & R. Massana, 2012. Grazing rates of protists in wetlands under contrasting light conditions due to floating plants. Aquatic Microbial Ecology 65: 221–232.CrossRefGoogle Scholar
  27. Janes, R. A., J. W. Eaton & K. Hardwick, 1996. The effects of floating mats of Azolla filiculoides Lam. and Lemna minuta Kunth on the growth of submerged macrophytes. Hydrobiologia 340: 23–26.CrossRefGoogle Scholar
  28. Jeppesen, E., M. Søndergaard, A. R. Pedersen, K. Jürgens, A. Strzelczak, T. L. Lauridsen & L. S. Johansson, 2007. Salinity induced regime shift in shallow brackish lagoons. Ecosystems 10: 47–57.CrossRefGoogle Scholar
  29. Jeppesen, E., B. Kronvang, M. Meerhoff, M. Søndergaard, K. M. Hansen, H. E. Andersen, T. L. Lauridsen, L. Liboriussen, M. Beklioglu, A. Özen & J. E. Olesen, 2009. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. Journal of Environmental Quality 38: 1930–1941.PubMedCrossRefGoogle Scholar
  30. Jones, R. I., 2000. Mixotrophy in planktonic protests: an overview. Freshwater Biology 45: 219–226.CrossRefGoogle Scholar
  31. Kobayashi, J. T., S. M. Thomaz & F. M. Pelicice, 2008. Phosphorus as a limiting factor for Eichhornia crassipes growth in the upper Paraná River floodplain. Wetlands 28: 905–913.CrossRefGoogle Scholar
  32. Kosten, S., V. L. M. Huszar, E. Bécares, L. S. Costa, E. van Donk, L. A. Hansson, E. Jeppesen, C. Kruk, G. Lacerot, N. Mazzeo, L. De Meester, B. Moss, M. Lürling, T. Nõges, S. Romo & M. Scheffer, 2012. Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology 18: 118–126.CrossRefGoogle Scholar
  33. Lacoul, P. & B. Freedman, 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews 14: 89–136.CrossRefGoogle Scholar
  34. Litchman, E., C. A. Klausmeier & P. Bossard, 2004. Phytoplankton nutrient competition under dynamic light regimes. Limnology and Oceanography 49: 1457–1462.CrossRefGoogle Scholar
  35. Lugo, A., L. A. Bravo-Inclan, J. Alcocer, M. L. Gaytan, M. G. Oliva, Md R Sanchez, M. Chavez & G. Vilaclara, 1998. Effect on the planktonic community of the chemical program used to control water hyacinth (Eichhornia crassipes) in Guadalupe Dam, Mexico. Aquatic Ecosystem Health & Management 1: 333–343.CrossRefGoogle Scholar
  36. Lürling, M., F. Eshetu, E. J. Faassen, S. Kostein & V. L. M. Huszar, 2012. Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biology 58: 552–559.CrossRefGoogle Scholar
  37. Maine, M. A., N. L. Sune, M. C. Panigatti, M. J. Pizarro & F. Emiliani, 1999. Relationships between water chemistry and macrophytes chemistry in lotic and lentic environments. Archiv für Hydrobiologie 145: 129–145.Google Scholar
  38. Mangas-Ramirez, E. & M. Elias-Gutierrez, 2004. Effect of mechanical removal of water hyacinth (Eichhornia crassipes) on the water quality and biological communities in a Mexican reservoir. Journal of Aquatic Health and Management 7: 161–168.Google Scholar
  39. Marshall, E. & F. J. R. Junor, 1981. The decline of Salvinia molesta on Lake Kariba. Hydrobiologia 83: 477–484.CrossRefGoogle Scholar
  40. May, R. M., 1977. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269: 471–477.CrossRefGoogle Scholar
  41. Mc Vea, C. & C. E. Boyd, 1975. Effects of water hyacinth cover on water chemistry, phytoplankton and fish in ponds. Journal of Environmental Quality 4: 375–378.CrossRefGoogle Scholar
  42. Meerhoff, M. & E. Jeppesen, 2009. Shallow lakes and ponds. In Likens, G. E. (ed.), Encyclopedia of Inland Waters. Elsevier, Oxford: 645–655.CrossRefGoogle Scholar
  43. Meerhoff, M., L. Rodríguez-Gallego & N. Mazzeo, 2002. Potencialidades y limitaciones del uso de Eichhornia crassipes (Mart.) Solms en la restauración de sistemas hipereutróficos subtropicales. In Fernández Cirelli, A. & G. Chalar Marquesá (eds), El agua en Iberoamérica. De la limnología a la gestión en Sudamérica, Buenos Aires: 61–73.Google Scholar
  44. Meerhoff, M., N. Mazzeo, B. Moss & L. Rodríguez-Gallego, 2003. The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology 37: 377–391.CrossRefGoogle Scholar
  45. Meerhoff, M., C. Iglesias, F. Teixeira de Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007a. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009–1021.CrossRefGoogle Scholar
  46. Meerhoff, M., J. M. Clemente, F. Teixeira de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007b. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.CrossRefGoogle Scholar
  47. Mitchell, D. S., 1969. The ecology of vascular hydrophytes on Lake Kariba. Hydrobiologia 34: 448–464.CrossRefGoogle Scholar
  48. Morris, P. F. & W. G. Barker, 1977. Oxygen transport rates through mats of Lemna minor and Wolffia sp. and oxygen tension within and below the mat. Canadian Journal of Botany 55: 1926–1932.CrossRefGoogle Scholar
  49. Naselli-Flores, L., J. Padisák, M. T. Dokulil & I. Chorus, 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502: 395–403.CrossRefGoogle Scholar
  50. Netten, J. J. C., G. H. P. Arts, R. Gylstra, E. H. van Nes, M. Scheffer & R. M. M. Roijackers, 2010. Effect of temperature and nutrients on the competition between free-floating Salvinia natans and submerged Elodea muttalli in mesocosms. Fundamental and Applied Limnology/Archiv für Hydrobiologie 177: 125–132.CrossRefGoogle Scholar
  51. O’Farrell, I., R. Sinistro, I. Izaguirre & F. Unrein, 2003. Do steady state assemblages occur in shallow lentic environments from wetlands? Hydrobiologia 502: 197–209.CrossRefGoogle Scholar
  52. O’Farrell, I., P. de Tezanos Pinto & I. Izaguirre, 2007. A pattern of morphological variability in phytoplankton in response to different light conditions. Hydrobiologia 578: 65–77.CrossRefGoogle Scholar
  53. O’Farrell, I., P. de Tezanos Pinto, P. Rodríguez, G. Chaparro & H. Pizarro, 2009. Experimental evidence of the dynamic effect of free-floating plants on phytoplankton ecology. Freshwater Biology 54: 363–375.CrossRefGoogle Scholar
  54. O’Farrell, I., I. Izaguirre, G. Chaparro, F. Unrein, R. Sinistro, H. Pizarro, P. L. Rodríguez, P. de Tezanos Pinto, R. Lombardo & G. Tell, 2011. Water level variation as the main driver of the alternation between a free-floating plant and a phytoplankton dominated state: a long term study in a floodplain lake. Aquatic Sciences 73: 275–287.CrossRefGoogle Scholar
  55. Paerl, H. W. & J. Huisman, 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports 1: 27–37.PubMedCrossRefGoogle Scholar
  56. Peeters, E. T. H. M., J. P. van Zuidam, B. G. van Zuidam, E. H. Van Nes, S. Kosten, P. G. M. Heuts, R. M. M. Roijackers, J. J. C. Netten & M. Scheffer, 2013. Changing weather conditions and floating plants in temperate drainage ditches. Journal of Applied Ecology 50: 585–593.CrossRefGoogle Scholar
  57. Petrucio, M. M. & F. A. Esteves, 2000. Influence of photoperiod on the uptake of nitrogen and phosphorus in the water by Eichhornia crassipes and Salvinia auriculata. Revista Brasileira de Biologia 60: 373–379.PubMedCrossRefGoogle Scholar
  58. Portielje, R. & R. M. M. Roijackers, 1995. Primary succession of aquatic macrophytes in experimental ditches in relation to nutrient input. Aquatic Botany 50: 127–140.CrossRefGoogle Scholar
  59. Rhee, G. Y. & I. J. Gotham, 1980. Optimum N:P ratios and coexistence of planktonic algae. Journal of Phycology 16: 486–489.CrossRefGoogle Scholar
  60. Rodríguez, P., H. Pizarro & M. S. Vera, 2012. Size fractioned phytoplankton production in two humic shallow lakes with contrasting coverage of free floating plants. Hydrobiologia 691: 285–298.CrossRefGoogle Scholar
  61. Roijackers, R., S. Szabó & M. Scheffer, 2004. Experimental analysis of the competition between algae and duckweed. Archiv für Hydrobiologie 160: 401–412.CrossRefGoogle Scholar
  62. Scheffer, M., 2009. Critical Transitions in Nature and Society. Princeton University Press, Princeton.Google Scholar
  63. Scheffer, M., H. S. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.PubMedCrossRefGoogle Scholar
  64. Scheffer, M., S. Szabó, A. Gragnani, E. Van Nes, S. Rinaldi, N. Kautsky, J. Norberg, R. M. M. Roijackers & R. J. M. Franken, 2003. Floating plant dominance as a stable state. Proceedings of the National Academy of Science of the United States of America 100: 4040–4045.CrossRefGoogle Scholar
  65. Schindler, D. W., R. E. Hecky, D. L. Findlay, M. P. Stainton, B. R. Parker, M. J. Paterson, K. G. Beaty, M. Lyng & S. E. M. Kasian, 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Science of the United States of America 105: 11254–11258.CrossRefGoogle Scholar
  66. Schröder, A., L. Persson & A. M. De Ross, 2005. Direct experimental evidence for alternative stable states: a review. Oikos 110: 3–19.CrossRefGoogle Scholar
  67. Schwaderer, A., K. Yoshiyama, P. de Tezanos Pinto, N. G. Swenson, C. A. Klausmeier & E. Litchman, 2011. Eco-evolutionary differences in light utilization traits help explain phytoplankton distribution patterns. Limnology and Oceanography 56: 589–598.CrossRefGoogle Scholar
  68. Sculthorpe, C. D., 1967. The Biology of Aquatic Vascular Plants. Edward Arnold Publishers, London.Google Scholar
  69. Sharma, A., M. K. Gupta & P. K. Singhal, 1996. Toxic effects of leachate of water hyacinth decay on the growth of Scenedesmus obliquus (Chlorophyta). Water Research 10: 2281–2286.CrossRefGoogle Scholar
  70. Smith, S. D. P., 2012. Identifying and evaluating causes of alternative community states in wetland communities. Oikos 121: 675–686.CrossRefGoogle Scholar
  71. Smith, S. D. P., 2014. The roles of nitrogen and phosphorus in regulating the dominance of floating and submerged aquatic plants in a field mesocosms experiment. Aquatic Botany 112: 1–9.CrossRefGoogle Scholar
  72. Søndergaard, M., E. Jeppesen, P. Kristensen & O. Sortkjær, 1990. Interactions between sediment and water in a shallow hypertrophic lake: a study on phytoplankton collapses in Lake Søbygård, Denmark. Hydrobiologia 191: 149–164.CrossRefGoogle Scholar
  73. Søndergaard, M., J. P. Jensen & E. Jeppesen, 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506: 135–145.CrossRefGoogle Scholar
  74. Sosa, A. J., H. A. Cordo & J. Sacco, 2007. Preliminary evaluation of Megamelus seutellaris Berg (Hemiptera: Delphacidae), a candidate for biological control of water hyacinth. Biological Control 42: 129–138.CrossRefGoogle Scholar
  75. Sunda, W. G., E. Graneli & C. J. Gobler, 2006. Positive feedback and the development and persistence of ecosystem disruptive algal blooms. Journal of Phycology 42: 963–974.CrossRefGoogle Scholar
  76. Sutherland, J. P., 1974. Multiple stable points in natural communities. The American Naturalist 108: 859–873.CrossRefGoogle Scholar
  77. Szabó, S., M. Braun, S. Balázsy & O. Reisinger, 1998. Influences of nine algal species isolated from duckweed-covered sewage miniponds on Lemna gibba L. Aquatic Botany 60: 189–195.CrossRefGoogle Scholar
  78. Szabó, S., M. Braun & G. Borics, 1999. Elemental flux between algae and duckweeds (Lemna gibba) during competition. Archives fur Hyrobiologie 146: 355–367.Google Scholar
  79. Szabó, S., R. Roijacers, M. Scheffer & G. Borics, 2005. The strenght of limiting factors for duckweed during algal competition. Archives fur Hyrobiologie 164: 127–140.CrossRefGoogle Scholar
  80. Thomaz, S. M., T. A. Pagioro, L. M. Bini & K. Murphy, 2006. Effect of reservoir drawdown on biomass of three species of aquatic macrophytes in a large sub-tropical reservoir (Itaipu, Brazil). Hydrobiologia 570: 53–59.CrossRefGoogle Scholar
  81. van der Heide, T., R. M. M. Roijackers, E. H. van Nes & E. T. H. M. Peeters, 2006. A simple equation for describing the temperature dependent growth of free-floating macrophytes. Aquatic Botany 84: 171–175.CrossRefGoogle Scholar
  82. Van Geest, G. J., H. Coops, M. Scheffer & E. H. Van Nes, 2007. Long transients near the ghost of a stable state in eutrophic shallow lakes with fluctuating water level. Ecosystems 10: 37–47.CrossRefGoogle Scholar
  83. Villamagna, A. M. & B. R. Murphy, 2010. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshwater Biology 55: 282–298.CrossRefGoogle Scholar
  84. Wagner, C. & R. Adrian, 2009. Cyanobacteria dominance: quantifying the effects of climate change. Limnology and Oceanography 54: 2460–2468.CrossRefGoogle Scholar
  85. Wu, X., H. Wu, J. Chen & J. Ye, 2013. Effects of allelochemical extracted from water lettuce (Pistia stratiotes Linn.) on the growth, microcystin production and release of Microcystis aeruginosa. Environmental Science and Pollution Research International 11: 8192–8201.CrossRefGoogle Scholar
  86. Zalocar de Domitrovic, Y., 2003. Effect of fluctuations in water level on phytoplankton development in three lakes of the Paraná river floodplain (Argentina). Hydrobiologia 510: 175–193.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, IEGEBA (CONICET-UBA)Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations