, Volume 741, Issue 1, pp 193–203 | Cite as

Comparison of mesozooplankton assemblages across quasi-synoptic oceanographic features on the north-western Iberian shelf break

  • Lucía Lopez-Lopez
  • Ana Miranda
  • Gerardo Casas
  • Izaskun Preciado
  • Elena Tel


The mesozooplankton community at the north-western Iberian shelf break was studied among adjacent oceanographic regimes (including upwelling, stratification and anticyclonic eddies) during 17 days in autumn 2009. Zooplankton sampling locations were determined in situ, after identifying the oceanographic regimes from CTD profiles performed over the continental shelf and upper slope. Zooplankton samples were sorted indentifying taxonomically the main zooplankton groups, from phylum to subclass. Copepods were the most abundant group (ind m−3) in all stations, followed by appendicularians, doliolids and siphonophores. The mesozooplankton community was significantly different amongst oceanographic conditions. Meroplankton abundance was higher in upwelling stations; particularly lamellibranchia, polychaeta and bryozoan larvae abundance, and decreased from early to late upwelling conditions. Medusae and chaetognata were found exclusively under the latter oceanographic regime. However, dissimilarity between the oceanographic conditions was mostly based on the varying contribution of the four most common groups.


Mesozooplankton Community structure Meroplankton–holoplankton rate Mesoscale oceanography Upwelling 



The authors want to thank two anonymous reviewers for their comments and suggestions which greatly improved the quality of our manuscript. We also want to express our gratitude to several colleagues from the Spanish Institute of Oceanography-C.O. Santander, particularly to Dr. J. Gil who greatly contributed to the sampling design of this study, Joaquín Barrado and Ángel Merino for assistance with field work, to Dr. A. Serrano, Dr. A. Punzón and Dr. F. Velasco for allowing this experimental design onboard the Demersales IBTS survey, and generally to the crew and scientific team on the ‘Demersales 09’ survey. We must also acknowledge the Ocean Color Project (, for maintaining the database of global satellite images freely available for research and educational purposes. LLL was supported during the development of this work by the IEO-FPI 2011/04 predoctoral fellowship.


  1. Andersen, V., J. Sardou & P. Nival, 1992. The diel migrations and vertical distributions of zooplankton and micronekton in the Northwestern Mediterranean Sea. 2. Siphonophores, hydromedusa and pyrosomids. Journal of Plankton Research 14: 1155–1169.CrossRefGoogle Scholar
  2. Andersen, V., F. Francois, J. Sardou, M. Picheral, M. Scotto & P. Nival, 1998. Vertical distributions of macroplankton and micronekton in the Ligurian and Tyrrhenian Seas (Northwestern Mediterranean). Oceanologica Acta 21: 655–676.CrossRefGoogle Scholar
  3. Bakun, A., D. B. Field, A. Redondo-Rodriguez & S. J. Weeks, 2010. Greenhouse gas, upwelling- favorable winds and the future of coastal ocean upwelling ecosystems. Global Change Biology 16: 1213–1228.CrossRefGoogle Scholar
  4. Barth, J. A. & P. A. Wheeler, 2005. Introduction to special section: coastal advances in shelf transport. Journal of Geophysical Research 110: C10S01.Google Scholar
  5. Blanco-Bercial, L., F. Álvarez-Marqués & J. A. Cabal, 2006. Changes in the mesozooplankton community associated with the hydrography off the Northwestern Iberian Peninsula. ICES Journal of Marine Science 63: 799–810.CrossRefGoogle Scholar
  6. Bode, A., M. T. Alvarez-Ossorio, J. M. Cabanas, A. Miranda & M. Varela, 2009. Recent trends in plankton and upwelling intensity off Galicia (NW Spain). Progress in Oceanography 83: 342–350.CrossRefGoogle Scholar
  7. Cury, P. M., Y. J. Shin, B. Planque, J. M. Durant, J.-M. Fromentin, M. Kramer-Schadt, N. C. Stenseth, M. Travers & V. Grimm, 2008. Ecosystem oceanography for global change in fisheries. Trends in Ecology and Evolution 23: 338–346.PubMedCrossRefGoogle Scholar
  8. Deibel, D. & G. A. Paffenhoefer, 2009. Predictability of patches of pelagic salps and doliolids (Tunicata, Thaliacea). Journal of Plankton Research 31: 1571–1579.CrossRefGoogle Scholar
  9. Gaudy, R. & F. Youssara, 2003. Variations of zooplankton metabolism and feeding in the frontal area of the Alboran Sea (western Mediterranean) in winter. Oceanologica Acta 26: 179–189.CrossRefGoogle Scholar
  10. Garland, E. D., C. A. Zimmer & S. J. Lentz, 2002. Larval distributions in inner-shelf waters: the roles of wind-driven cross-shelf currents and diel vertical migrations. Limnology and Oceanography 47: 803–817.CrossRefGoogle Scholar
  11. Gil, J., 1995. Inestabilidades, fenómenos de mesoescala y movimiento vertical a lo largo del borde sur del golfo de Vizcaya. Boletín del Instituto Español de Oceanografía 11: 141–159.Google Scholar
  12. Gil, J., 2003. Changes in the pattern of water masses resulting from a poleward slope current in the Cantabrian Sea (Bay of Biscay). Estuarine Coastal and Shelf Research 57: 1139–1149.CrossRefGoogle Scholar
  13. Gil, J., 2008. Macro and mesoscale physical patterns in the Bay of Biscay. Journal of the Marine Biological Association of the UK 88: 217–225.CrossRefGoogle Scholar
  14. Goldthwait, S. A. & D. K. Steinberg, 2008. Elevated biomass of mesozooplankton and enhanced fecal pellet flux in cyclonic and mode-water eddies in the Sargasso Sea. Deep-Sea Research II 55: 1360–1377.CrossRefGoogle Scholar
  15. Gonzalez-Quirós, R., J. Cabal, F. Alvarez-Marqués & A. Isla, 2003. Ichthyoplankton distribution and plankton production related to the shelf break front at the Avilés Canyon. ICES Journal of Marine Science 60: 198–210.CrossRefGoogle Scholar
  16. Hernández-Leon, S., C. Almeida, M. Gomez, S. Torres, I. Montero & A. Portillo- Hahnfeld, 2001. Zooplankton biomass and indices of feeding and metabolism in island- generated eddies around Gran Canaria. Journal of Marine Systems 30: 51–66.CrossRefGoogle Scholar
  17. Hernandez-Leon, S., C. Almeida, A. Portillo- Hahnefeld, M. Gomez, J. M. Rodriguez & J. Aristegui, 2002. Zooplankton biomass and indices of feeding and metabolism in relation to an upwelling filament off northwest Africa. Journal of Marine Research 60: 327–346.CrossRefGoogle Scholar
  18. Huntley, M. E., A. Gonzalez, Y. Zhu, M. Zhou & X. Irigoien, 2000. Zooplankton dynamics in a mesoscale eddy-jet system off California. Marine Ecology Progress Series 201: 165–178.CrossRefGoogle Scholar
  19. Huthnance, J. M., 1995. Circulation, exchange and water masses at the ocean margin, the role of physical processes at the shelf edge. Progress in Oceanography 35: 353–431.CrossRefGoogle Scholar
  20. Keister, J. E., W. T. Peterson & S. D. Pierce, 2009. Zooplankton distribution and cross-shelf transfer of carbon in an area of complex mesoscale circulation in the northern California Current. Deep Sea Research I 56: 212–231.CrossRefGoogle Scholar
  21. Llope, M., R. Anadon, L. Viesca, M. Quevedo, R. González-Quirós & N. Stenseth, 2006. Hydrography of the Southern Bay of Biscay shelf-break region: integrating the multiscale physical variability over the period 1993–2003. Journal of Geophysical Research 111: C09021.CrossRefGoogle Scholar
  22. Lopez- Urrutia, A., X. Irigoien, J. L. Acuña & R. Harris, 2003. In situ feeding physiology and grazing impact of the appendicularian community in temperate waters. Marine Ecology Progress Series 252: 125–141.CrossRefGoogle Scholar
  23. McGillicuddy, D. J., L. A. Anderson, N. R. Bates, T. Bibby, K. O. Buesseler, C. A. Carlson, C. S. Davis, C. Ewart, P. G. Falkowski, S. A. Goldthwait, D. A. Hansell, W. J. Jenkins, R. Johnson, V. K. Kosnyrev, J. R. Ledwell, Q. P. Li, D. A. Siegel & D. K. Steinberg, 2007. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science 316: 1021–1026.PubMedCrossRefGoogle Scholar
  24. Molinero, J. C. & P. Nival, 2004. Spatial distribution of the copepod Centropages typicus in Ligurian Sea (NW Mediterranean). Role of surface currents estimated by Topex–Poseidon altimetry. Comptes Rendus Biologies 327: 1103–1111.PubMedCrossRefGoogle Scholar
  25. Molinero, J. C., L. Lopez-Lopez, S. Dallot, P. Nival & F. Ibañez, under review. Mosaic-like zooplankton patchiness in the core of the Ligurian Front, Northwestern Mediterranean revealed by high frequency sampling.Google Scholar
  26. Morales, C., M. L. Torreblanca, S. Hormazabal, M. Correa-Ramírez, S. Nunez & P. Hidalgo, 2010. Mesoscale structure of copepod assemblages in the coastal transition zone and oceanic waters off central-southern Chile. Progress in Oceanography 84: 158–173.CrossRefGoogle Scholar
  27. Pinca, S. & S. Dallot, 1995. Mesozooplankton and macrozooplankton composition patterns related to hydrodynamic structures in the Ligurian Sea (Trophos-2 experiment, April–June-1986). Marine Ecology Progress Series 126: 49–65.CrossRefGoogle Scholar
  28. Riandey, V., G. Champalbert, F. Carlotti, I. Taupier-Letage & D. Thibault-Botha, 2005. Zooplankton distribution related to the hydrodynamic features in the Algerian Basin (western Mediterranean Sea) in summer 1997. Deep-Sea Research I 11: 2029–2048.CrossRefGoogle Scholar
  29. Sanchez, F. & J. Gil, 2000. Hydrographic mesoscale structures and poleward current as a determinant of hake (Merluccius merluccius) recruitment in the southern Bay of Biscay. ICES Journal of Marine Science 57: 152–170.CrossRefGoogle Scholar
  30. Sanchez, F. & A. Serrano, 2003. Variability of groundfish communities over the Cantabrian Sea during the 1990s. ICES Marine Science Symposia 219: 249–260.Google Scholar
  31. Shanks, A. L. & L. Brink, 2005. Testing the hypothesis that meroplankton (bivalve larvae) are transported offshore by upwelling. Marine Ecology Progress Series 302: 1–12.CrossRefGoogle Scholar
  32. Shanks, A. L. & K. P. Shearman, 2009. Paradigm lost? Cross-shelf distributions of intertidal invertebrate larvae are unaffected by upwelling or downwelling. Marine Ecology Progress Series 385: 189–204.CrossRefGoogle Scholar
  33. Sobrinho-Gonçalves, L., M. T. Moita, S. Garrido & M. E. Cunha, 2013. Environmental forcing on the interaction of plankton communities across a continental shelf in the Eastern Atlantic upwelling system. Hydrobiologia 713: 167–182.CrossRefGoogle Scholar
  34. Strzelecki, J., A. J. Koslow & A. Waite, 2007. Comparison of mesozooplankton communities froma pair of warm- and cold-core eddies off the coast of Western Australia. Deep-Sea Research II 54: 1103–1112.CrossRefGoogle Scholar
  35. Thibault, D., R. Gaudy & J. Lefevre, 1994. Zooplankton biomass, feeding and metabolism in a geostrophic frontal area (Almeria-Oran front, Western Mediterranean)-significance to pelagic food webs. Journal of Marine Systems 5: 297–311.CrossRefGoogle Scholar
  36. Yoshinaga, M. Y., P. Y. G. Sumida, I. C. A. Silveira, A. M. Ciotti, S. A. Gaeta, L. F. C. M. Pacheco & A. G. Koettker, 2010. Vertical distribution of benthic invertebrate larvae during an upwelling event along a transect off the tropical Brazilian continental margin. Journal of Marine Systems 79: 124–133.CrossRefGoogle Scholar
  37. Valdes, J. L., M. T. Alvarez-Ossorio, A. L. Gauzens & A. Miranda, 1990. Zooplankton composition and distribution off the coast of Galicia, Spain. Journal of Plankton Research 12: 629–643.CrossRefGoogle Scholar
  38. Valdés, L., A. López-Urrutia, J. Cabal, M. Álvarez-Osorio, A. Bode, A. Miranda, M. Cabanas, I. Huskin, R. Anadón, F. Álvarez- Marqués, M. Llope & N. Rodríguez, 2007. A decade of sampling in the Bay of Biscay: what are the zooplankton series telling us? Progress in Oceanography 74: 98–114.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Lucía Lopez-Lopez
    • 1
  • Ana Miranda
    • 2
  • Gerardo Casas
    • 2
  • Izaskun Preciado
    • 1
  • Elena Tel
    • 3
  1. 1.Spanish Institute of Oceanography-C.O. SantanderSantanderSpain
  2. 2.Spanish Institute of Oceanography-C.O. VigoVigoSpain
  3. 3.Spanish Institute of Oceanography-MadridMadridSpain

Personalised recommendations