, Volume 730, Issue 1, pp 59–77 | Cite as

Microhabitat influence on chironomid community structure and stable isotope signatures in West Greenland lakes

  • Nina S. Reuss
  • Ladislav Hamerlík
  • Gaute Velle
  • Anders Michelsen
  • Ole Pedersen
  • Klaus P. Brodersen
Primary Research Paper


Most functional feeding types are represented within the species rich group of aquatic chironomids. Thus, we hypothesized that different lake types and microhabitats within lakes would (1) host specific chironomid communities and (2) that the individual communities would show specific δ 13C stable isotope signatures reflecting the prevailing origin of food source. To test our hypotheses, five lakes in southwest Greenland were investigated at a high taxonomic resolution and with detailed information on δ 13C signature of the chironomids and of individual microhabitats (macrophytes, sediment, stones, and profundal). We found that there was a significant difference in δ 13C between the chironomid assemblages of freshwater lakes and oligosaline lakes, while assemblages of the littoral microhabitats did not differ significantly. The δ 13C of chironomids reflected the wide variety of habitat signals, particularly in the freshwater lakes. Our results indicate that many chironomid taxa are ubiquitous and are found in several microhabitats, suggesting that they can adjust their feeding strategy according to the habitat. The implication is that chironomid assemblage composition has only limited use as indicator of littoral microhabitats in the Arctic. On the other hand, the δ 13C signature of fossil chironomids might have a potential as indicator of microhabitats in freshwater lakes.


Arctic Lake types Habitats Stable δ13C isotopes Chironomidae 



This work was supported by a STENO-Grant from The Danish Council for Independent Research—Natural Sciences to N. S. Reuss. We also thank the Danish National Research Foundation for supporting the activities within the Center for Permafrost (CENPERM DNRF100). We are grateful to two anonymous reviewers whose comments to a previous version considerably improved the paper.


  1. Anderson, N. J., K. P. Brodersen, D. B. Ryves, S. McGowan, L. S. Johansson, E. Jeppesen & M. J. Leng, 2008. Climate versus in-lake processes as controls on the development of community structure in a low-Arctic lake (South-West Greenland). Ecosystems 11: 307–324.CrossRefGoogle Scholar
  2. Bade, D. L., S. R. Carpenter, J. J. Cole, P. C. Hanson & R. H. Hesslein, 2004. Controls of δ 13C-DIC in lakes: geochemistry, lake metabolism, and morphometry. Limnology and Oceanography 49: 1160–1172.CrossRefGoogle Scholar
  3. Battarbee, R. W., 2000. Palaeolimnological approaches to climate change, with special regard to the biological record. Quaternary Science Reviews 19: 107–124.CrossRefGoogle Scholar
  4. Berg, M. B., 1995. Larval food and feeding behavior. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: Biology and Ecology of Non-biting Midges. Chapman and Hall, London: 136–168.CrossRefGoogle Scholar
  5. Bigler, C., I. Larocque, S. M. Peglar, H. J. B. Birks & R. I. Hall, 2002. Quantitative multiproxy assessment of long-term patterns of holocene environmental change from a small lake near Abisko, Northern Sweden. Holocene 12: 481–496.CrossRefGoogle Scholar
  6. Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecology 89: 2623–2632.PubMedCrossRefGoogle Scholar
  7. Bonilla, S., V. Villeneuve & W. F. Vincent, 2005. Benthic and planktonic algal communities in a high Arctic Lake: pigment structure and contrasting responses to nutrient enrichment. Journal of Phycology 41: 1120–1130.CrossRefGoogle Scholar
  8. Bonilla, S., M. Rautio & W. F. Vincent, 2009. Phytoplankton and phytobenthos pigment strategies: implications for algal survival in the changing Arctic. Polar Biology 32: 1293–1303.CrossRefGoogle Scholar
  9. Brodersen, K. P., 2007. Chironomids (Diptera) from sub-saline lakes in West Greenland: diversity, assemblage structure and respiratory adaptation. In Andersen, T. (ed.), Contributions to the Systematics and Ecology of Aquatic Diptera – A Tribute to Ole A. Sæther. The Caddis Press, Columbus: 61–68.Google Scholar
  10. Brodersen, K. P. & N. J. Anderson, 2000. Subfossil insect remains (Chironomidae) and lake-water temperature inference in the Sisimiut-Kangerlussuaq region, Southern West Greenland. Geology of Greenland Survey Bulletin 186: 78–82.Google Scholar
  11. Brodersen, K. P. & N. J. Anderson, 2002. Distrubution of chironomids (Diptera) in low Arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction. Freshwater Biology 47: 1137–1157.CrossRefGoogle Scholar
  12. Brodersen, K. P. & R. Quinlan, 2006. Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quaternary Science Reviews 25: 1995–2012.CrossRefGoogle Scholar
  13. Brodersen, K. P., C. Lindegaard & N. J. Anderson, 2001a. Holocene temperature and environmental reconstruction from lake sediments in the Søndre Strømfjord region, Southern West Greenland. Geology of Greenland Survey Bulletin 189: 59–64.Google Scholar
  14. Brodersen, K. P., B. V. Odgaard, O. Vestergaard & N. J. Anderson, 2001b. Chironomid stratigraphy in the shallow and eutrophic Lake Sobygaard, Denmark: chironomid–macrophyte co-occurrence. Freshwater Biology 46: 253–267.CrossRefGoogle Scholar
  15. Brodersen, K. P., O. Pedersen, C. Lindegaard & K. Hamburger, 2004. Chironomids (Diptera) and oxy-regulatory capacity: an experimental approach to paleolimnological interpretation. Limnology and Oceanography 49: 1549–1559.CrossRefGoogle Scholar
  16. Brooks, S. J., P. G. Langdon & O. Heiri, 2007. The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology. QRA Technical Guide No. 10. Quaternary Research Association, London.Google Scholar
  17. Chetelat, J., L. Cloutier & M. Amyot, 2010. Carbon sources for lake food webs in the Canadian High Arctic and other regions of Arctic North America. Polar Biology 33: 1111–1123.CrossRefGoogle Scholar
  18. Clarke, K. R. & R. H. Green, 1988. Statistical design and analysis for a biological effects study. Marine Ecology-Progress Series 46: 213–226.CrossRefGoogle Scholar
  19. Danks, H. V., 1981. Arctic arthropods: a review of systematics and ecology with particular reference to the North American fauna. Entomological Society of Canada, Ottawa.Google Scholar
  20. Eggermont, H. & O. Heiri, 2012. The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications. Biological Reviews 87: 430–456.PubMedCrossRefGoogle Scholar
  21. France, R. L., 1995. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnology and Oceanography 40: 1310–1313.CrossRefGoogle Scholar
  22. Hecky, R. E. & R. H. Hesslein, 1995. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society 14: 631–653.CrossRefGoogle Scholar
  23. Heggen, M. P., H. H. Birks & N. Anderson, 2010. Long-term ecosystem dynamics of a small lake and its catchment in west Greenland. Holocene 20: 1207–1222.CrossRefGoogle Scholar
  24. Heiri, O., 2004. Within-lake variability of subfossil chironomid assemblages in shallow Norwegian lakes. Journal of Paleolimnology 32: 67–84.CrossRefGoogle Scholar
  25. Jeffrey, S. W., R. F. C. Mantoura & T. Bjørnland, 1997. Data for the identification of 47 key phytoplankton pigments. In Jeffrey, S. W., R. F. C. Mantoura & S. W. Wright (eds), Phytoplankton Pigments in Oceanography. UNESCO, Paris: 447–559.Google Scholar
  26. Jones, R. I., C. E. Carter, A. Kelly, S. Ward, D. J. Kelly & J. Grey, 2008. Widespread contribution of methane-cycle bacteria to the diets of lake profundal chironomid larvae. Ecology 89: 857–864.PubMedCrossRefGoogle Scholar
  27. Karlsson, J. & P. Byström, 2005. Littoral energy mobilization dominates energy supply for top consumers in subarctic lakes. Limnology and Oceanography 50: 538–543.CrossRefGoogle Scholar
  28. Kling, G. W., B. Fry & W. J. Obrien, 1992. Stable isotopes and planktonic trophic structure in Arctic Lakes. Ecology 73: 561–566.CrossRefGoogle Scholar
  29. Kurek, J. & L. C. Cwynar, 2009. Effects of within-lake gradients on the distribution of fossil chironomids from maar lakes in western Alaska: implications for environmental reconstructions. Hydrobiologia 623: 37–52.CrossRefGoogle Scholar
  30. Langton, P. H., 1991. A key to pupal exuviae of West Palaearctic Chironomidae. Private Publication, Huntingdon.Google Scholar
  31. Lindegaard, C., 1992. Zoobenthos ecology of Thingvallavatn – vertical-distribution, abundance, population-dynamics and production. Oikos 64: 257–304.CrossRefGoogle Scholar
  32. Madsen, T. V. & K. Sand-Jensen, 1991. Photosynthetic carbon assimilation in aquatic macrophytes. Aquatic Botany 41: 5–40.CrossRefGoogle Scholar
  33. McGowan, S., D. B. Ryves & N. J. Anderson, 2003. Holocene records of effective precipitation in West Greenland. The Holocene 13: 239–249.CrossRefGoogle Scholar
  34. McGowan, S., R. K. Juhler & N. J. Anderson, 2008. Autotrophic response to lake age, conductivity and temperature in two West Greenland lakes. Journal of Paleolimnology 39: 301–317.CrossRefGoogle Scholar
  35. Moog, O. 1995. Fauna Aquatica Austriaca. A Comprehensive Species Inventory of Austrian Aquatic Organisms with Ecological Notes. Wasserwirtschaftskataster, Bundesministerium für Land- und Forstwirtschaft, Wien.Google Scholar
  36. Moore, J. W., 1981. Factors influencing the species composition, distribution and abundance of benthic invertebrates in the profundal zone of a eutrophic Northern Lake. Hydrobiologia 83: 505–510.CrossRefGoogle Scholar
  37. Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320.CrossRefGoogle Scholar
  38. Pfennig, N., 1989. Ecology of phototrophic purple and green sulfur bacteria. In Schlegel, H. G. & B. Bowien (eds), Autotrophic Bacteria. Science Tech Publishing, Madison: 97–116.Google Scholar
  39. Pinder, L. C. V., 1980. Spatial distribution of Chironomidae in an English chalk stream. In Murray, D. A. (ed.), Chironomidae. Ecology, Systematics, Cytology and Physiology. Proceedings of the VIIth international Chironomid symposium. Pergamon Press, Oxford: 153–161.Google Scholar
  40. Pinder, L. C. V., 1986. Biology of freshwater Chironomidae. Annual Review of Entomology 31: 1–23.CrossRefGoogle Scholar
  41. Pinder, L. C. V., 1992. Biology of epiphytic Chironomidae (Diptera, Nematocera) in chalk streams. Hydrobiologia 248: 39–51.CrossRefGoogle Scholar
  42. Pinder, L. C. V., 1995. The habitats of chironomid larvae. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: biology and ecology of non-biting midges. Chapman and Hall, London: 107–135.CrossRefGoogle Scholar
  43. Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.CrossRefGoogle Scholar
  44. Post, D. M., C. A. Layman, D. Arrington, G. Takimoto, J. Quattrochi & C. G. Montana, 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152: 179–189.PubMedCrossRefGoogle Scholar
  45. Premke, K., J. Karlsson, K. Steger, C. Gudasz, E. von Wachenfeldt & L. J. Tranvik, 2010. Stable isotope analysis of benthic fauna and their food sources in boreal lakes. Journal of the North American Benthological Society 29: 1339–1348.CrossRefGoogle Scholar
  46. Rautio, M. & W. F. Vincent, 2007. Isotopic analysis of the source of organic carbon for zooplankton in shallow Subarctic and Arctic waters. Ecography 30: 77–87.CrossRefGoogle Scholar
  47. Reuss, N. & D. J. Conley, 2005. Effects of sediment storage conditions on pigment analyses. Limnology and Oceanography: Methods 3: 477–487.CrossRefGoogle Scholar
  48. Reuss, N. S., N. J. Anderson, S. C. Fritz & G. L. Simpson, 2013a. Responses of microbial phototrophs to late-Holocene environmental forcing of lakes in south-west Greenland. Freshwater Biology 58: 690–704.CrossRefGoogle Scholar
  49. Reuss, N. S., L. Hamerlik, G. Velle, A. Michelsen, O. Pedersen & K. P. Brodersen, 2013b. Stable isotopes reveal that chironomids occupy several trophic levels within West Greenland lakes: implications for food web studies. Limnology and Oceanography 58: 1023–1034.CrossRefGoogle Scholar
  50. Rosén, P., U. Segerstrom, L. Eriksson & I. Renberg, 2003. Do diatom, chironomid, and pollen records consistently infer Holocene July air temperature? A comparison using sediment cores from four alpine lakes in northern Sweden. Arctic Antarctic and Alpine Research 35: 279–290.CrossRefGoogle Scholar
  51. Saeby, R. M. H. & P. A. Henderson, 2004. Commuity Analysis Package 3.0. Pisces Conservation Ltd, Lymington.Google Scholar
  52. Saros, J., 2009. Integrating neo- and paleolimnological approaches to refine interpretations of environmental change. Journal of Paleolimnology 41: 243–252.CrossRefGoogle Scholar
  53. Strickland, J. D. H. & T. R. Parsons, 1968. A Practical Handbook of Seawater Analysis. Bulletin No. 167. Fisheries Research Board of Canada, Ottawa.Google Scholar
  54. ter Braak, C. J. F. & P. Smilauer, 2012. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0. Microcomputer Power, Ithaca.Google Scholar
  55. Tokeshi, M. & L. C. V. Pinder, 1985. Microhabitats of stream invertebrates on 2 submersed macrophytes with contrasting leaf morphology. Holarctic Ecology 8: 313–319.Google Scholar
  56. Tolonen, K. T., H. Hamalainen, I. J. Holopainen & J. Karjalainen, 2001. Influences of habitat type and environmental variables on littoral macroinvertebrate communities in a large lake system. Archiv fur Hydrobiologie 152: 39–67.Google Scholar
  57. Vadeboncoeur, Y., E. Jeppesen, M. J. Vander Zanden, H. H. Schierup, K. Christoffersen & D. M. Lodge, 2003. From Greenland to Green Lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48: 1408–1418.CrossRefGoogle Scholar
  58. van Hardenbroek, M., A. Lotter, D. Bastviken, N. Duc & O. Heiri, 2012. Relationship between δ 13C of chironomid remains and methane flux in Swedish lakes. Freshwater Biology 57: 166–177.CrossRefGoogle Scholar
  59. Vander Zanden, M. J. & J. B. Rasmussen, 1999. Primary consumer δ 13C and δ 15N and the trophic position of aquatic consumers. Ecology 80: 1395–1404.CrossRefGoogle Scholar
  60. Velle, G., S. J. Brooks, H. J. B. Birks & E. Willassen, 2005. Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia. Quaternary Science Reviews 24: 1429–1462.CrossRefGoogle Scholar
  61. Velle, G., A. E. Bjune, J. Larsen & H. J. B. Birks, 2010a. Holocene climate and environmental history of Brurskardstjørni, a lake in the catchemnt of Øvre Heimdalsvatn, south-central Norway. Hydrobiologia 642: 13–34.CrossRefGoogle Scholar
  62. Velle, G., K. P. Brodersen, H. J. B. Birks & E. Willassen, 2010b. Midges as quantitative temperature indicator species: lessons for palaeoecology. Holocene 20: 989–1002.CrossRefGoogle Scholar
  63. Velle, G., K. P. Brodersen, H. J. B. Birks & E. Willassen, 2012a. Inconsistent results should not be overlooked: a reply to Brooks et al. 2012. The Holocene 22: 1501–1508.Google Scholar
  64. Velle, G., R. J. Telford, O. Heiri, J. Kurek & H. Birks, 2012b. Testing intra-site transfer functions: an example using chironomids and water depth. Journal of Paleolimnology 48: 545–558.CrossRefGoogle Scholar
  65. Verschuren, D., J. Tibby, K. Sabbe & N. Roberts, 2000. Effects of depth, salinity, and substrate on the invertebrate community of a fluctuating tropical lake. Ecology 81: 164–182.CrossRefGoogle Scholar
  66. Wiederholm, T., 1983. Chironomidae of the Holarctic region keys and diagnoses. Part I: larvae. Entomologica Scandinavica Supplements 19: 457.Google Scholar
  67. Wiederholm, T., 1986. Chironomidae of the Holarctic region keys and diagnoses. Part II: pupae. Entomologica scandinavica Supplements 28: 147–298.Google Scholar
  68. Williams, W. D., 1991. Comments on the so-called salt lakes of Greenland. Hydrobiologia 210: 67–74. Google Scholar
  69. Williams, W. D., A. J. Boulton & R. G. Taaffe, 1990. Salinity as a determinant of salt lake fauna – a question of scale. Hydrobiologia 197: 257–266.CrossRefGoogle Scholar
  70. Zhang, E., R. Jones, A. Bedford, P. Langdon & H. Tang, 2007. A chironomid-based salinity inference model from lakes on the Tibetan Plateau. Journal of Paleolimnology 38: 477–491.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nina S. Reuss
    • 1
  • Ladislav Hamerlík
    • 1
    • 2
  • Gaute Velle
    • 3
    • 4
  • Anders Michelsen
    • 5
    • 6
  • Ole Pedersen
    • 1
  • Klaus P. Brodersen
    • 1
  1. 1.Freshwater Biological Laboratory, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
  2. 2.Faculty of Natural SciencesMatthias Belius UniversityBanská BystricaSlovakia
  3. 3.Uni EnvironmentUni ResearchBergenNorway
  4. 4.Department of BiologyUniversity of BergenBergenNorway
  5. 5.Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
  6. 6.Center for PermafrostUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations