, Volume 727, Issue 1, pp 185–195 | Cite as

Biofilm functional responses to the rehydration of a dry intermittent stream

  • Xisca Timoner
  • V. Acuña
  • L. Frampton
  • P. Pollard
  • S. Sabater
  • S. E. Bunn
Primary research paper


Intermittent water flow regimes characterize streams in many world regions, especially those with arid and semiarid climates. During cease to flow conditions, biofilms on streambed sediments may be exposed to desiccation. Environmental conditions and resource availability change with desiccation and may influence biofilm functioning and whole stream ecosystem processes. Rainfall events during the nonflow phase can rehydrate streambed sediments, but the effect of these pulses on biofilm functioning is unclear. This study aimed to analyze the effects of a rehydration event on biofilm functional diversity during the nonflow period in a subtropical Australian stream. Biofilms from three different stream pools on the same reach; one permanently water-covered and the other two differing in their desiccation time were studied. Biofilms initially differed owing to the time they were exposed to dry conditions but rehydration events significantly increased biofilm functional diversity, producing a “reset” effect on the desiccation exposure, as after that bacterial functioning decreased again because of the new dry conditions. The observed rapid biofilm responses to rehydration during flow intermittency might be essential in sustaining biofilm functional diversity in intermittent streams.


Biofilm Intermittency Desiccation Rehydration BiologEcoPlates™ 



The authors thank Lars Pelzer for field assistance. Xisca Timoner was recipient of a PhD fellowship from the Spanish Ministry of science and technology (AP-2007-01945). This research was funded by the projects SCARCE (CONSOLIDER-INGENIO CSD2009-00065), and the CARBONET (CGL2011-30474-C02-01) of the Spanish Ministry of Science and Innovation.


  1. Allison, S. D. & J. B. H. Martiny, 2008. Resistance, resilience, and redundancy in microbial communities. PNAS 105: 11512–11519.PubMedCrossRefGoogle Scholar
  2. Amalfitano, S., S. Fazi, A. Zoppini, A. B. Caracciolo, P. Grenni & A. Puddu, 2008. Responses of benthic bacteria to experimental drying in sediments from mediterranean temporary rivers. Microbial Ecology 55: 270–279.PubMedCrossRefGoogle Scholar
  3. Anderson, M. J., 2001. Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences 58: 626–639.CrossRefGoogle Scholar
  4. Bär, M., J. von Hardenberg, E. Meron, & A. Provenzale, 2002. Modelling the survival of bacteria in drylands: the advantage of being dormant. Proceedings of the Royal Society B. Biological sciences 269: 937–942.Google Scholar
  5. Belnap, J., S. L. Phillips & M. E. Miller, 2004. Response of desert biological soil crusts to alterations in precipitation frequency. Oecologia 141: 306–316.PubMedCrossRefGoogle Scholar
  6. Boulton, A. J. & P. S. Lake, 1992. The ecology of two intermittent streams in Victoria, Australia III. Temporal changes in faunal composition. Freshwater Biology 27: 123–138.CrossRefGoogle Scholar
  7. Braun, B., U. Böckelmann, E. Grohmann & U. Szewzyk, 2010. Bacterial soil communities affected by water-repellency. Geoderma 158: 343–351.CrossRefGoogle Scholar
  8. Buesing, N. & M. O. Gessner, 2003. Incorporation of radiolabeled leucine into protein to estimate bacterial production in plant litter, sediment, epiphytic biofilms, and water samples. Applied and Environmental Microbiology 72: 291–301.Google Scholar
  9. Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.PubMedCrossRefGoogle Scholar
  10. Burns, R. G., J. L. deForest, J. Marxsen, R. L. Sinsabaugh, M. E. Stromberger, M. D. Wallenstein, M. N. Weintraub & A. Zoppini, 2013. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology & Biochemistry 58: 216–234.CrossRefGoogle Scholar
  11. Chowdhury, N., P. Marschner & R. Burns, 2011. Response of microbial activity and community structure to decreasing soil osmotic and matric potential. Plant and Soil 344: 241–254.CrossRefGoogle Scholar
  12. Cobon, D., & N. Toombs, 2007. Practical adaptation to Climate change in regional natural resource management. Queensland Case Studies–South East Queensland Western Catchments Report. Toowoomba.Google Scholar
  13. Dahm, C. N., M. A. Baker, D. I. Moore & J. R. Thibault, 2003. Coupled biogeochemical and hydrological responses of streams and rivers to drought. Freshwater Biology 48: 1219–1231.CrossRefGoogle Scholar
  14. Davies, B. R., M. C. Thoms, K. F. Walker, J. H. O’Keefe & J. A. Gore, 1994. Dryland rivers: their ecology, conservation and management. In Calow, P. & G. E. Petts (eds), The Rivers Handbook. Blackwell Scientific, Oxford: 284–511.Google Scholar
  15. Döll, P. & H. M. Schmied, 2012. How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis. Environmental Research Letters 7: 014037.CrossRefGoogle Scholar
  16. Febria, C. M., P. Beddoes, R. R. Fulthorpe & D. D. Williams, 2011. Bacterial community dynamics in the hyporheic zone of an intermittent stream. The ISME Journal 6: 1078–1788.PubMedCrossRefGoogle Scholar
  17. Fierer, N. & J. P. Schimel, 2002. Effects of drying – rewetting frequency on soil carbon and nitrogen transformations. Soil Biology & Biochemistry 34: 777–787.CrossRefGoogle Scholar
  18. Garland, J. L., 1996. Patterns of potential C source utilization by rhizosphere communities. Soil Biology & Biochemistry 28: 223–230.CrossRefGoogle Scholar
  19. Garland, J. L., 1997. Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiology Ecology 24: 289–300.CrossRefGoogle Scholar
  20. Garland, J. L. & A. L. Mills, 1991. Classification and characterization of heterotrophic microbial communities on the basis of Patterns of Community-Level Sole-Carbon-Source Utilization. Applied and Environmental Microbiology 57: 2351–2359.PubMedCentralPubMedGoogle Scholar
  21. Gasith, A. & V. H. Resh, 1999. Streams in Mediterranean Climate Regions: abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics 30: 51–81.CrossRefGoogle Scholar
  22. Griebler, C., B. Mindl & D. Slezak, 2001. Combining DAPI and SYBR Green II for the enumeration of total bacterial numbers in aquatic sediments. International Review of Hydrobiology 86: 453–465.CrossRefGoogle Scholar
  23. Hirabayashi, Y., K. Shinjiro, S. Emori, O. Taikan & K. Masahide, 2008. Global projections of changing risks of floods and droughts in a changing climate. Hydrological Science Journal 53: 754–772.CrossRefGoogle Scholar
  24. Howard-Williams, C., C. L. Vincent, P. A. Broady & W. F. Vincent, 1986. Antarctic stream ecosystems: variability in environmental properties and algal community structure. International Review of Hydrobiology 71: 511–544.CrossRefGoogle Scholar
  25. Insman, H., 1997. A new set of substrates proposed for community characterization in environmental samples. In Insman, H. & A. Ranger (eds), Microbial Communities: Functional Versus Structural Approaches. Springer, New York: 259–260.Google Scholar
  26. Insam, H., & M. Goberna, 2004. Use of Biolog® for the Community Level Physiological Profiling (CLPP) of environmental samples In Kowalchuk, G. A., F. J. de Bruijn, I. M. Head, A. D. Akkermans, & J. D. van Elsas (eds), Molecular Microbial Ecology Manual, 2 Edn. Kluwer Academic Publishers, Netherlands: 853–860.Google Scholar
  27. Iovieno, P. & E. Bååth, 2008. Effect of drying and rewetting on bacterial growth rates in soil. FEMS Microbiology Ecology 65: 400–407.PubMedCrossRefGoogle Scholar
  28. Kennard, M. J., B. J. Pusey, J. D. Olden, S. J. Mackay, J. L. Stein & N. Marsh, 2010. Classification of natural flow regimes in Australia to support environmental flow management. Freshwater Biology 55: 171–193.CrossRefGoogle Scholar
  29. Kennedy, A. D., 1993. Water as a Limiting Factor in the Antarctic terrestrial environment: abiogeographical synthesis. Artic and Alpine research 25: 308–315.CrossRefGoogle Scholar
  30. Kuwae, T. & Y. Hosokawa, 1999. Determination of abundance and biovolume of bacteria in sediments by dual staining with 4′,6-diamidino-2-phenylindole and acridine orange: relationship to dispersion treatment and sediment characteristics. Applied and Environmental Microbiology 65: 3407–3412.PubMedCentralPubMedGoogle Scholar
  31. Lake, P. S., 2003. Ecological effects of perturbation by drought in flowing waters. Freshwater Biology 48: 1161–1172.CrossRefGoogle Scholar
  32. Lear, G., A. Dopheide, P. Ancion, K. Roberts, V. Washington, J. Smith & G. D. Lewis, 2012. Biofilms in freshwater: their importance for the maintenance and monitoring of freshwater health. In Lear, G. & G. Lewis (eds), Microbial Biofilms: Current Research and Applications. Caister Academic Press, Auckland: 238.Google Scholar
  33. Lindstrom, J. E., R. P. Barry & J. F. Braddock, 1998. Microbial community analysis: a kinetic approach to constructing potential C source utilization patterns. Soil Biology & Biochemistry 30: 231–239.CrossRefGoogle Scholar
  34. Mamilov, A. S. & O. M. Dilly, 2002. Soil microbial eco-physiology as affected by short-term variations in environmental conditions. Soil Biology & Biochemistry 34: 1283–1290.CrossRefGoogle Scholar
  35. Marxsen, J., A. Zoppini & S. Wilczek, 2010. Microbial communities in streambed sediments recovering from desiccation. FEMS Microbiology Ecology 71: 374–386.PubMedCrossRefGoogle Scholar
  36. Milly, P. C. D., K. A. Dunne & A. V. Vecchia, 2005. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438: 347–350.PubMedCrossRefGoogle Scholar
  37. Nadeau, T. L. & M. C. Rains, 2007. Hydrological connectivity between headwater streams and downstream waters: how science can inform policy. Journal of the American Water Resources Association 43: 118–133.CrossRefGoogle Scholar
  38. Parry, M. L., J. P. Canziani, J. P. Palutikof, P. J. van der Linden & C. E. Hanson, 2007. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.Google Scholar
  39. Placella, S. A., E. L. Brodie & M. K. Firestone, 2012. Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. PNAS 109: 10931–10936.PubMedCrossRefGoogle Scholar
  40. Preston-Mafham, J., L. Boddy & P. F. Randerson, 2002. Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles–a critique. FEMS Microbiology Ecology 42: 1–14.PubMedGoogle Scholar
  41. Rees, G. N., G. O. Watson, D. S. Baldwin & A. M. Mitchell, 2006. Variability in sediment microbial communities in a semipermanent stream: impact of drought. Journal of North America Benthological Society 25: 370–378.CrossRefGoogle Scholar
  42. Romaní, A. M. & S. Sabater, 1997. Metabolism recovery of a stromatolitic biofilm after drought in a Mediterranean stream. Archiv für Hydrobiologie 140: 261–271.Google Scholar
  43. Romaní, A. M., J. Artigas, A. Camacho, M. A. S. Graça, & C. Pascoal, 2009. La biota de los ríos: los microorganismos heterotróficos Conceptos y técnicas en ecología fluvial. Fundación BBVA: 169–218.Google Scholar
  44. Romaní, A. M., S. Amalfitano, J. Artigas, S. Fazi, S. Sabater, X. Timoner, I. Ylla, & A. Zoppini, 2012. Microbial biofilm structure and organic matter use in mediterranean streams. Hydrobiologia 1–16. doi: 10.1007/s10750-012-1302-y
  45. Sala, M. M., M. Estrada & J. M. Gasol, 2006. Seasonal changes in the functional diversity of bacterioplankton in contrasting coastal environments of the NW Mediterranean. Aquatic Microbial Ecology 44: 1–9.CrossRefGoogle Scholar
  46. Schimel, J., T. C. Balser & M. Wallenstein, 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88: 1386–1394.PubMedCrossRefGoogle Scholar
  47. Smalla, K., U. Wachtendorf, H. Heuer, W. Liu, L. Forney & U. T. E. Wachtendorf, 1998. Analysis of biolog GN substrate utilization patterns by microbial communities. Applied and Environmental Microbiology 64: 1220–1225.PubMedCentralPubMedGoogle Scholar
  48. Stefanowicz, A., 2006. The biolog plates technique as a tool in ecological studies of microbial communities. Polish Journal of Environmental Studies 15: 669–676.Google Scholar
  49. Timoner, X., V. Acuña, D. von Schiller & S. Sabater, 2012. Functional responses of stream biofilms to flow cessation, desiccation and rewetting. Freshwater Biology 57: 1565–1578.CrossRefGoogle Scholar
  50. Tiquia, S. M., 2010. Metabolic diversity of the heterotrophic microorganisms and potential link to pollution of the Rouge River. Environmental Pollution 158: 1435–1443.PubMedCrossRefGoogle Scholar
  51. Tooth, S., 2000. Process, form and change in dryland rivers: a review of recent research. Earth-Science Reviews 57: 67–107.CrossRefGoogle Scholar
  52. Tzoraki, O., N. P. Nikolaidis, Y. Amaxidis & N. T. Skoulikidis, 2007. In-stream biogeochemical processes of a temporary river. Environmental Science and Technology 41: 1225–1231.PubMedCrossRefGoogle Scholar
  53. Uys, M. C. & J. H. O’Keefe, 1997. Simple words and fuzzy zones: early directions for temporary river research in South Africa. Environmental Management 21: 517–531.PubMedCrossRefGoogle Scholar
  54. von Schiller, D., V. Acuña, D. Graeber, E. Martí, M. Ribot, S. Sabater, X. Timoner & K. Tockner, 2011. Contraction, fragmentation and expansion dynamics determine nutrient availability in a Mediterranean forest stream. Aquatic Sciences 73: 485–497.CrossRefGoogle Scholar
  55. Wallenstein, M. D. & E. K. Hall, 2012. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry 109: 35–47.CrossRefGoogle Scholar
  56. Wetzel, R. G., 1983. Periphyton of Freshwater Ecosystems. Dr. W. Junk Publishers, The Hague, Boston, Lancaster: 346 pp.Google Scholar
  57. Williams, D. D., 2006. The Biology of Temporary Waters. Oxford University Press, Oxford.Google Scholar
  58. Williams, M. A. & C. W. Rice, 2007. Seven years of enhanced water availability influences the physiological, structural, and functional attributes of a soil microbial community. Applied Soil Ecology 35: 535–545.CrossRefGoogle Scholar
  59. Yancey, P. H., M. E. Clark, S. C. Hand, R. D. Bowlus & G. N. Somero, 1982. Living with water stress: evolution of osmolyte systems. Science 217: 1214–1222.PubMedCrossRefGoogle Scholar
  60. Ylla, I., I. Sanpera-Calbet, E. Vázquez, A. M. Romaní, I. Muñoz, A. Butturini & S. Sabater, 2010. Organic matter availability during pre-and post-drought periods in a Mediterranean stream. Hydrobiologia 657: 217–232.CrossRefGoogle Scholar
  61. Zak, J., M. R. Willing, D. L. Moorhead & H. G. Wildman, 1994. Functional diversity of microbial communities: a quantitative approach. Soil Biology & Biochemistry 26: 1101–1108.CrossRefGoogle Scholar
  62. Zoppini, A., S. Amalfitano, S. Fazi & A. Puddu, 2010. Dynamics of a benthic microbial community in a riverine environment subject to hydrological fluctuations (Mulargia River, Italy). Hydrobiologia 657: 37–51.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Xisca Timoner
    • 1
    • 2
  • V. Acuña
    • 1
  • L. Frampton
    • 3
  • P. Pollard
    • 3
  • S. Sabater
    • 1
    • 2
  • S. E. Bunn
    • 3
  1. 1.Catalan Institute for Water Research (ICRA), Science and Technology Park of the University of GironaGironaSpain
  2. 2.Institute of Aquatic EcologyUniversity of GironaGironaSpain
  3. 3.Australian Rivers InstituteGriffith UniversityBrisbaneAustralia

Personalised recommendations