, Volume 727, Issue 1, pp 121–136 | Cite as

The ecology of benthopelagic fishes at offshore wind farms: a synthesis of 4 years of research

  • J. T. Reubens
  • S. Degraer
  • M. Vincx
Primary Research Paper


In the next 10–20 years, thousands of wind turbines will be present in the North Sea. In this paper, we investigate the impact of these windmill artificial reefs (WARs) on the ecology of benthopelagic fish. More specifically we will try to resolve the attraction-ecological trap-production issue for Atlantic cod and pouting at WARs and link the information to opportunities for fisheries activities. From 2009 until 2012 the behavioural ecology of Atlantic cod and pouting was investigated at WARs in the Belgian part of the North Sea (BPNS). Information on length-frequency distribution, diet, community structure and movements were combined to gain insights on the behavioural ecology and to unravel whether production occurs. We demonstrated that specific age groups of Atlantic cod and pouting are seasonally attracted towards the WARs, that they show high site fidelity and feed upon the dominant epifaunal prey species present. Growth was observed throughout the period the fishes were present. Production on a local scale can be assumed. On a regional scale however, no changes were observed yet. Based on the acquired knowledge we judged that no fisheries activities should be allowed inside the offshore wind farms in the BPNS.


Atlantic cod Benthopelagic fish Offshore wind farm Pouting Reef effects Windmill artificial reef 



The first author acknowledges a doctoral grant from the Fund for Scientific Research—Flanders (FWO This research was facilitated by the Flanders Marine Institute (VLIZ) and the Management Unit of the North Sea Mathematical Models (MUMM). We thank the crew of the RV Simon Stevin and RV Belgica, the numerous colleagues and students for their assistance in the field. We are grateful to vzw Fishpop for the use of their logo in the conceptual figures. This paper contributes to the Belgian wind farm monitoring programme, with the financial support of C-Power nv, Belwind nv and Northwind nv.


  1. Andersson, M. H., M. Berggren, D. Wilhelmsson & M. C. Öhman, 2009. Epibenthic colonization of concrete and steel pilings in a cold-temperate embayment: a field experiment. Helgoland Marine Research 63: 249–260.CrossRefGoogle Scholar
  2. Arapogianni, A., J. Moccia & J. Wilkes, 2013. The European offshore wind industry—key trends and statistics 2012. European Wind Energy Association, Brussels: 31 pp.Google Scholar
  3. Bannerot, S. P. & J. A. Bohnsack, 1986. A stationary visual census technique for quantitatively assessing community structure of coral reef fishes NOAA Technical Report NMFS 41, 15 pp.Google Scholar
  4. Bohnsack, J. A., 1989. Are high densities of fishes at artificial reefs the result of habitat limitation or behavioral preference? Bulletin of Marine Science 44: 631–645.Google Scholar
  5. Bohnsack, J. A. & D. L. Sutherland, 1985. Artificial reef research: a review with recommendations for future priorities. Bulletin of Marine Science 37: 11–39.Google Scholar
  6. Bohnsack, J. A., D. E. Harper, D. B. McClellan & M. Hulsbeck, 1994. Effects of reef size on colonization and assemblage structure of fishes at artificial reefs off southeastern Florida, USA. Bulletin of Marine Science 55: 796–823.Google Scholar
  7. Brickhill, M. J., S. Y. Lee & R. M. Connolly, 2005. Fishes associated with artificial reefs: attributing changes to attraction or production using novel approaches. Journal of Fish Biology 67: 53–71.CrossRefGoogle Scholar
  8. Bull, S. & J. J. Kendall Jr, 1994. An indication of the process: offshore platforms as artificial reefs in the Gulf of Mexico. Bulletin of Marine Science 55: 1086–1098.Google Scholar
  9. Carr, M. H. & M. A. Hixon, 1997. Artificial reefs: the importance of comparisons with natural reefs. Fisheries 22: 28–33.CrossRefGoogle Scholar
  10. Cohen, D. M., T. Lnada, T. Lwamoto & N. Scialabba, 1990. FAO species catalogue, Vol. 10. Gadiform fishes of the world (order Gadiformes). An Annotated And Illustrated Catalogue of Cods, Hakes, Grenadiers and Other Gadiform Fishes Known to Date. FAO Fisheries Synopsis, Vol. 125, 442 pp.Google Scholar
  11. Daan, N., 1974. Growth of North Sea cod, Gadus morhua. Netherlands Journal of Sea Research 8: 27–48.CrossRefGoogle Scholar
  12. De Mesel, I., F. Kerckhof, B. Rumes, A. Norro, J.-S. Houziaux & S. Degraer, 2013. Fouling community on the foundations of wind turbines and the surrounding scour protection. In Degraer, S., R. Brabant, & B. Rumes (eds), Environmental impacts of offshore wind farms in the Belgian part of the North Sea: Learning from the past to optimise future monitoring programmes. Royal Belgian Institute of Natural Sciences, Operational Directorate Nature Environment, Marine Ecology and Management Section, 122–137.Google Scholar
  13. De Troch, M., J. Reubens, E. Heirman, S. Degraer & M. Vincx, 2013. Energy profiling of demersal fish: a case-study in wind farm artificial reefs. Marine Environmental Research 92: 224–233.PubMedCrossRefGoogle Scholar
  14. Degraer, S., U. Braeckman, J. Haelters, K. Hostens, T. Jacques, F. Kerckhof, B. Merckx, M. Rabaut, E. Stienen & G. Van Hoey, 2009. Studie betreffende het opstellen van een lijst van potentiële Habitatrichtlijngebieden in het Belgische deel van de Noordzee Eindrapport in opdracht van de Federale Overheidsdienst Volksgezondheid, Veiligheid van de Voedselketen en Leefmilieu, Directoraat-generaal Leefmilieu Brussel, België: 93 pp.Google Scholar
  15. Douvere, F., F. Maes, A. Vanhulle & J. Schrijvers, 2007. The role of marine spatial planning in sea use management: the Belgian case. Marine Policy 31: 182–191.CrossRefGoogle Scholar
  16. Fabi, G., S. Manoukian & A. Spagnolo, 2006. Feeding behavior of three common fishes at an artificial reef in the northern Adriatic Sea. Bulletin of Marine Science 78: 39–56.Google Scholar
  17. Fenberg, P., 2012. The science of European marine reserves: Status, efficacy, and future needs. Marine Policy 36: 1012–1021.CrossRefGoogle Scholar
  18. Garcia, S. M., A. Zerbi, C. Aliaume, T. Do Chi & G. Laserre, 2003. The Ecosystem Approach to Fisheries: Issues, Terminology, Principles, Institutional Foundations, Implementation and Outlook. FAO Fisheries Technical paper. No. 443. Rome: 71 pp.Google Scholar
  19. Gell, F. R. & C. M. Roberts, 2003. Benefits beyond boundaries: the fishery effects of marine reserves. Trends in Ecology & Evolution 18: 448–455.CrossRefGoogle Scholar
  20. Gotceitas, V., S. Fraser & J. A. Brown, 1995. Habitat use by juvenile Atlantic cod (Gadus morhua) in the presence of an actively foraging and non-foraging predator. Marine Biology 123: 421–430.CrossRefGoogle Scholar
  21. Gregory, R. S. & J. T. Anderson, 1997. Substrate selection and use of protective cover by juvenile Atlantic cod Gadus morhua in inshore waters of Newfoundland. Marine Ecology Progress Series 146: 9–20.CrossRefGoogle Scholar
  22. Grossman, G. D., G. P. Jones & W. J. Seaman, 1997. Do artificial reefs increase regional fish production? A review of existing data. Fisheries 22: 17–23.CrossRefGoogle Scholar
  23. Hallier, J. P. & D. Gaertner, 2008. Drifting fish aggregation devices could act as an ecological trap for tropical tuna species. Marine Ecology Progress Series 353: 255–264.CrossRefGoogle Scholar
  24. Halpern, B. S. & R. R. Warner, 2002. Marine reserves have rapid and lasting effects. Ecology Letters 5: 361–366.CrossRefGoogle Scholar
  25. Hamerlynck, O. & J. Mees, 1991. Temporal and spatial structure in the hyperbenthic community of a shallow coastal area and its relation to environmental variables. Oceanologica Acta 11: 205–212.Google Scholar
  26. Hamerlynck, O. & K. Hostens, 1993. Growth, feeding, production and consumption in 0-group bib (Trisopterus luscus L.) and whithing (Merlangius merlangus L.) in a shallow coastal area of the South-West Netherlands. ICES Journal of Marine Science 50: 81–91.CrossRefGoogle Scholar
  27. Hilborn, R. & C. J. Walters, 1992. Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Reviews in Fish Biology and Fisheries 2: 177–178.CrossRefGoogle Scholar
  28. Hixon, M. A. & J. P. Beets, 1989. Shelter characteristics and Caribbean fish assemblages: experiments with artificial reefs. Bulletin of Marine Science 44: 666–680.Google Scholar
  29. Hixon, M. A. & J. P. Beets, 1993. Predation, prey refuges, and the structure of coral-reef fish assemblages. Ecological Monographs 63: 77–101.CrossRefGoogle Scholar
  30. Hutchings, J. A. & J. D. Reynolds, 2004. Marine fish population collapses: consequences for recovery and extinction risk. BioScience 54: 297–309.CrossRefGoogle Scholar
  31. Hutchinson, W. F., G. R. Carvalho & S. I. Rogers, 2001. Marked genetic structuring in localised spawning populations of cod Gadus morhua in the North Sea and adjoining waters, as revealed by microsatellites. Marine Ecology Progress Series 223: 243–250.CrossRefGoogle Scholar
  32. Jessee, W. N., A. L. Carpenter & J. W. Carter, 1985. Distribution patterns and density estimates of fishes on a southern California artificial reef with comparisons to natural kelp-reef habitats. Bulletin of Marine Science 37: 214–226.Google Scholar
  33. Kerckhof, F., B. Rumes, T. Jacques, S. Degraer & A. Norro, 2010a. Early development of the subtidal marine biofouling on a concrete offshore windmill foundation on the Thornton Bank (southern North Sea): first monitoring results. Underwater Technology 29: 137–149.CrossRefGoogle Scholar
  34. Kerckhof, F., B. Rumes, A. Norro, T. G. Jacques & S. Degraer, 2010b. Seasonal variation and vertical zonation of the marine biofouling on a concrete offshore windmill foundation on the Thornton Bank (southern North Sea). In Degraer, S., R. Brabant & B. Rumes (eds), Offshore wind farms in the Belgian Part of the North Sea: Early environmental impact assessment and spatio-temporal variability. Royal Belgian Institute of Natural Sciences. Management Unit of the North Sea Mathematical Models, Marine ecosystem management unit, Brussels: 53–68.Google Scholar
  35. Kerckhof, F., S. Degraer, A. Norro & B. Rumes, 2011. Offshore intertidal hard substrata: a new habitat promoting non-indigenous species in the Southern North Sea: an exploratory study. In Degraer, S., R. Brabant & B. Rumes (eds), Offshore wind farms in the Belgian Part of the North Sea: Selected findings from the baseline and targeted monitoring. Royal Belgian Institute of Natural Sciences, Management Unit of the North Sea Mathematical Models, Marine ecosystem management unit, Brussels: 27–37.Google Scholar
  36. Kerckhof, F., B. Rumes, A. Norro, J. S. Houziaux & S. Degraer, 2012. A comparison of the first stages of biofouling in two offshore wind farms in the Belgian part of the North Sea. In Degraer, S., R. Brabant & B. Rumes (eds), Offshore wind farms in the Belgian Part of the North Sea: Heading for an understanding of environmental impacts. Royal Belgian Institute of Natural Sciences, Management Unit of the North Sea Mathematical Models, Marine ecosystem management unit, Brussels: 17–39.Google Scholar
  37. Köster, F. W., H.-. H. Hinrichsen, D. Schnack, M. A. S. John, B. R. Mackenzie, J. Tomkiewicz, C. Möllmann, G. Kraus, M. Plikshs & A. Makarchouk, 2003. Recruitment of Baltic cod and sprat stocks: identification of critical life stages and incorporation of environmental variability into stock-recruitment relationships. Scientia Marina 67: 129–154.CrossRefGoogle Scholar
  38. Krone, R., L. Gutow, T. J. Joschko & A. Schröder, 2013. Epifauna dynamics at an offshore foundation: implications of future wind power farming in the North Sea. Marine Environmental Research 85: 1–12.PubMedCrossRefGoogle Scholar
  39. Langhamer, O., 2012. Artificial reef effect in relation to offshore renewable energy conversion: state of the art. The Scientific World Journal Article ID 3867813: 1–8.CrossRefGoogle Scholar
  40. Langhamer, O., D. Wilhelmsson & J. Engstrom, 2009. Artificial reef effect and fouling impacts on offshore wave power foundations and buoys: a pilot study. Estuarine Coastal and Shelf Science 82: 426–432. doi: 10.1016/j.ecss.2009.02.009.CrossRefGoogle Scholar
  41. Leitao, F., M. N. Santos & C. C. Monteiro, 2007. Contribution of artificial reefs to the diet of the White Sea bream (Diplodus sargus). ICES Journal of Marine Science 64: 473–478.CrossRefGoogle Scholar
  42. Leonhard, S. B., C. Stenberg & J. Støttrup, 2011. Effect of the Horns Rev 1 Offshore Wind Farm on Fish Communities Follow-up Seven Years after Construction Molecular Ecology. DTU Aqua, Orbicon, DHI, NaturFocus. Report commissioned by The Environmental Group through contract with DTU Aqua Report NO 246-2011. National Institute of Aquatic Resources, Technical University of Denmark: 66 pp. + Appendices.Google Scholar
  43. Lindberg, W. J., 1997. Can science resolve the attraction–production issue? Fisheries 22: 10–13.Google Scholar
  44. Lindberg, W. J., T. K. Frazer, K. M. Portier, F. Vose, J. Loftin, D. J. Murie, D. M. Mason, B. Nagy & M. K. Hart, 2006. Density-dependent habitat selection and performance by a large mobile reef fish. Ecological Applications 16: 731–746.PubMedCrossRefGoogle Scholar
  45. Lindquist, D. G., L. B. Cahoon, I. E. Clavijo, M. H. Posey, S. K. Bolden, L. A. Pike, S. W. Burk & P. A. Cardullo, 1994. Reef fish stomach contents and prey abundance on reef and sand substrata associated with adjacent artificial and natural reefs in Onslow Bay, North Carolina. Bulletin of Marine Science 55(2): 308–318.Google Scholar
  46. Merayo, C. R., 1996. Reproduction and fecundity of the bib Trisopterus luscus (Linnaeus, 1758) (Pisces, Gadidae) in the central region of the Cantabrian Sea (northern Spain). Boletín del Instituto Español de Oceanografía 12: 17–29.Google Scholar
  47. Merayo, C. R. & M. L. Villegas, 1994. Age and growth of Trisopterus luscus (Linnaeus, 1758) (Pisces, Gadidae) off the coast of Asturias. Hydrobiologia 281: 115–122.CrossRefGoogle Scholar
  48. Peire, K., H. Nonneman & E. Bosshem, 2009. Gravity based foundations for the Thornton Bank Offshore Wind Farm. Terra et Aqua 115: 19–29.Google Scholar
  49. Pérez-Ruzafa, A., E. Martín, C. Marcos, J. M. Zamarro, B. Stobart, M. Harmelin-Vivien, S. Polti, S. Planes, J. A. García-Charton & M. González-Wangüemert, 2008. Modelling spatial and temporal scales for spill-over and biomass exportation from MPAs and their potential for fisheries enhancement. Journal for Nature Conservation 16: 234–255.CrossRefGoogle Scholar
  50. Pickering, H. & D. Whitmarsh, 1997. Artificial reefs and fisheries exploitation: a review of the ‘attraction versus production’ debate, the influence of design and its significance for policy. Fisheries Research 31: 39–59.CrossRefGoogle Scholar
  51. Polovina, J. J., 1989. Artificial reefs: nothing more than benthic fish aggregators. Reports of California Cooperative Oceanic Fisheries Investigations 30: 37–39.Google Scholar
  52. Polovina, J. J., 1991. Fisheries applications and biological impacts of artificial habitats. In Seaman, W. & L. M. Sprague (eds), Artificial habitats for marine and freshwater fisheries. Academic Press, New York: 153–176.CrossRefGoogle Scholar
  53. Polunin, N. V. C. & C. M. Roberts, 1993. Greater biomass and value of target coral-reef fishes in two small Caribbean marine reserves. Marine Ecology Progress Series 100: 167–176.CrossRefGoogle Scholar
  54. Randall, J. E., 1963. An analysis of the fish populations of artificial and natural reefs in the Virgin Islands. Caribbean Journal of Science 3: 31–47.Google Scholar
  55. Relini, G., M. Relini, G. Torchia & G. De Angelis, 2002. Trophic relationships between fishes and an artificial reef. ICES Journal of Marine Science 59: S36.CrossRefGoogle Scholar
  56. Reubens, J., S. Vanden Eede & M. Vincx, 2009. Monitoring of the effects of offshore wind farms on the endobenthos of soft substrates: Year-0 Bligh Bank and Year-1 Thorntonbank. In Degraer, S. & R. Brabant (eds), Offshore wind farms in the Belgian Part of the North Sea: State of the art after two years of environmental monitoring. Royal Belgian Institute of Natural Sciences. Management Unit of the North Sea Mathematical Models. Marine ecosystem management unit, Brussels: 59–91.Google Scholar
  57. Reubens, J., S. Degraer & M. Vincx, 2011. Aggregation and feeding behaviour of pouting (Trisopterus luscus) at wind turbines in the Belgian part of the North Sea. Fisheries Research 108: 223–227.CrossRefGoogle Scholar
  58. Reubens, J., U. Braeckman, J. Vanaverbeke, C. Van Colen, S. Degraer & M. Vincx, 2013a. Aggregation at windmill artificial reefs: CPUE of Atlantic cod (Gadus morhua) and pouting (Trisopterus luscus) at different habitats in the Belgian part of the North Sea. Fisheries Research 139: 28–34.CrossRefGoogle Scholar
  59. Reubens, J., F. Pasotti, S. Degraer & M. Vincx, 2013b. Residency, site fidelity and habitat use of Atlantic cod (Gadus morhua) at an offshore wind farm using acoustic telemetry. Marine Environmental Research 90: 128–135.PubMedCrossRefGoogle Scholar
  60. Reubens, J., S. Vandendriessche, A. Zenner, S. Degraer & M. Vincx, 2013c. Offshore wind farms as productive sites or ecological traps for gadoid fishes?—Impact on growth, condition index and diet composition. Marine Environmental Research 90: 66–74.PubMedCrossRefGoogle Scholar
  61. Reubens, J., M. De Rijcke, S. Degraer & M. Vincx, 2014. Diel variation in feeding and activity patterns of juvenile Atlantic cod at offshore wind farms. Journal of Sea Research 85: 214–221.CrossRefGoogle Scholar
  62. Righton, D., V. A. Quayle, S. Hetherington & G. Burt, 2007. Movements and distribution of cod (Gadus morhua) in the southern North Sea and English Channel: results from conventional and electronic tagging experiments. Journal of the Marine Biological Association of the UK 87: 559–613.CrossRefGoogle Scholar
  63. Roberts, C. M., J. A. Bohnsack, F. Gell, J. P. Hawkins & R. Goodridge, 2001. Effects of marine reserves on adjacent fisheries. Science 294: 1920–1923.PubMedCrossRefGoogle Scholar
  64. Robertson, B. A. & R. L. Hutto, 2006. A framework for understanding ecological traps and an evaluation of existing evidence. Ecology 87: 1075–1085.PubMedCrossRefGoogle Scholar
  65. Robichaud, D. & G. A. Rose, 2004. Migratory behaviour and range in Atlantic cod: inference from a century of tagging. Fish and Fisheries 5: 185–214.CrossRefGoogle Scholar
  66. Roff, D. A., 1983. An allocation model of growth and reproduction in fish. Canadian Journal of Fisheries and Aquatic Sciences 40: 1395–1404.CrossRefGoogle Scholar
  67. Rose, G. A. & D. W. Kulka, 1999. Hyperaggregation of fish and fisheries: how catch-per-unit-effort increased as the northern cod (Gadus morhua) declined. Canadian Journal of Fisheries and Aquatic Sciences 56: 118–127.CrossRefGoogle Scholar
  68. Schlaepfer, M. A., M. C. Runge & P. W. Sherman, 2002. Ecological and evolutionary traps. Trends in Ecology & Evolution 17: 474–480.CrossRefGoogle Scholar
  69. Vallin, L., A. Nissling & L. Westin, 1999. Potential factors influencing reproductive success of Baltic cod, Gadus morhua: a review. AMBIO 28: 92–99.Google Scholar
  70. van Deurs, M., T. M. Grome, M. Kaspersen, H. Jensen, C. Stenberg, T. K. Sørensen, J. Støttrup, T. Warnar & H. Mosegaard, 2012. Short- and long-term effects of an offshore wind farm on three species of sandeel and their sand habitat. Marine Ecology Progress Series 458: 169–180.CrossRefGoogle Scholar
  71. Vandendriessche, S., J. Derweduwen & K. Hostens, 2012. Monitoring the effects of offshore wind farms on the epifauna and demersal fish fauna of soft-bottom sediments. In Degraer, S., R. Brabant & B. Rumes (eds), Offshore wind farms in the Belgian part of the North Sea: Heading for an understanding of environmental impacts. Royal Belgian Institute of Natural Sciences. Management Unit of the North Sea Mathematical Models, Marine ecosystem management unit, Brussels: 55–71.Google Scholar
  72. Verhaeghe, D., D. Delbare & H. Polet, 2011. Haalbaarheidsstudie: Passieve visserij en maricultuur binnen de Vlaamse windmolenparken? Eindrapport MARIPAS. Institute for Agricultural and Fisheries Research: 136 pp.Google Scholar
  73. Wilson, J., C. W. Osenberg, C. M. St. Mary, C. A. Watson & W. J. Lindberg, 2001. Artificial reefs, the attraction–production issue, and density dependence in marine ornamental fishes. Aquarium Sciences and Conservation 3: 95–105.CrossRefGoogle Scholar
  74. Winter, H. V., G. Aarts & O. A. van Keeken, 2010. Residence time and behaviour of sole and cod in the Offshore Wind farm Egmond aan Zee (OWEZ). IMARES, Wageningen YR report number: C038/10: 50 pp.Google Scholar
  75. Zintzen, V., C. Massin, A. Norro & J. Mallefet, 2006. Epifaunal inventory of two shipwrecks from the Belgian continental shelf. Hydrobiologia 555: 207–219.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Marine, Biology Research Group, Department of BiologyGhent UniversityGhentBelgium
  2. 2.Marine Ecosystem Management Section, Operational Directorate Natural EnvironmentRoyal Belgian Institute of Natural SciencesBrusselsBelgium

Personalised recommendations