Advertisement

Hydrobiologia

, Volume 726, Issue 1, pp 43–51 | Cite as

Stay dormant or escape sprouting? Turion buoyancy and sprouting abilities of the submerged macrophyte Potamogeton crispus L.

  • Dong Xie
  • Dan Yu
  • Chengxing Xia
  • Wenhua You
Primary Research Paper

Abstract

The ability of asexual propagules to disperse is an important ecological determinant of the spread and establishment of many aquatic species. However, few previous studies have addressed the relationship between the asexual propagule buoyancy and sprouting abilities in submerged macrophytes. For this reason, turions of Potamogeton crispus samples were collected from Lake Liangzi, and an incubator sprouting experiment was conducted. Our results revealed that the floating turions showed higher sprouting rates than that of sinking turions, indicating the former ones are possibly with high levels of primary metabolites. The higher N and P concentrations in the floating turions caused lower C:N, C:P, and N:P ratios in these turions compared with sinking turions, which confirmed the activation of floating turions. The free amino acid and soluble carbohydrate concentrations were also higher in floating turions than those in sinking turions. Our results also revealed that turion leaf porosity rather than starch concentration may determine the density of P. crispus turions. This study makes a contribution to our understanding of how the internal characteristics of turions can (at least partly) determine dispersal outcomes and offers new insights into the dispersal and sprouting of asexual propagules of submerged macrophytes.

Keywords

Density Floating Porosity Potamogeton crispus L. Sinking Turion 

Notes

Acknowledgments

We thank Dr. Ling-fei Yu, Hui Wang, Shu-feng Fan, and Jin-ning Zhu for laboratory/field assistance and helpful discussions. This research was supported by the National Natural Science Foundation of China (31370382 and 30930011).

References

  1. Adamec, L., 1999. Turion overwintering of aquatic carnivorous plants. Carnivorous Plant Newsletter 28: 19–24.Google Scholar
  2. Adamec, L., 2003. Ecophysiological characterization of dormancy states in turions of the aquatic carnivorous plant Aldrovanda vesiculosa. Biologia Plantarum 47: 395–402.CrossRefGoogle Scholar
  3. Adamec, L., 2008. Respiration of turions and winter apices in aquatic carnivorous plants. Biologia 63: 515–520.CrossRefGoogle Scholar
  4. Adamec, L., 2010. Tissue mineral nutrient content in turions of aquatic plants: does it represent a storage function? Fundamental and Applied Limnology 176: 145–151.CrossRefGoogle Scholar
  5. Adamec, L., 2011. Dark respiration and photosynthesis of dormant and sprouting turions of aquatic plants. Fundamental and Applied Limnology 179: 151–158.CrossRefGoogle Scholar
  6. Appenroth, K. J. & H. Gabrys, 2001. Light-induced starch degradation in non-dormant turions of Spirodela polyrhiza. Photochemistry and Photobiology 73: 77–82.PubMedCrossRefGoogle Scholar
  7. Appenroth, K. J. & P. Ziegler, 2008. Light-induced degradation of storage starch in turions of Spirodela polyrhiza depends on nitrate. Plant, Cell & Environment 31: 1460–1469.CrossRefGoogle Scholar
  8. Appenroth, K. J., H. Augsten & H. Mohr, 1992. Photophysiology of turion germination in Spirodela polyrhiza (L.) Schleiden. X. Role of nitrate in the phytochrome-mediated response. Plant, Cell & Environment 15: 743–748.CrossRefGoogle Scholar
  9. Appenroth, K. J., A. Keresztes, E. Krzysztofowicz & H. Gabrys, 2011. Light-induced degradation of starch granules in turions of Spirodela polyrhiza studied by electron microscopy. Plant & Cell Physiology 52: 384–391.CrossRefGoogle Scholar
  10. Barko, J. W. & R. M. Smart, 1981. Comparative influences of light and temperature on the growth and metabolism of selected submersed freshwater macrophytes. Ecological Monographs 51: 219–236.CrossRefGoogle Scholar
  11. Boedeltje, G., J. P. Bakker, R. M. Bekker, J. M. Van Groenendael & M. Soesbergen, 2003. Plant dispersal in a lowland stream in relation to occurrence and three specific life-history traits of the species in the species pool. Journal of Ecology 91: 855–866.CrossRefGoogle Scholar
  12. Bolduan, B. R., G. C. van Eeckhout, H. W. Quade & J. E. Gannon, 1994. Potamogeton crispus—the other invader. Lake and Reservoir Management 10: 113–125.CrossRefGoogle Scholar
  13. Bray, R. H. & L. T. Kurz, 1945. Determination of total organic and available forms of phosphorus in soils. Soil Science 59: 39–45.CrossRefGoogle Scholar
  14. Cao, T., L. Ni, P. Xie, J. Xu & M. Zhang, 2011. Effects of moderate ammonium enrichment on three submersed macrophytes under contrasting light availability. Freshwater Biology 56: 1620–1629.CrossRefGoogle Scholar
  15. Chambers, P. A., D. H. N. Spence & D. C. Weeks, 1985. Photocontrol of turion formation by Potamogeton crispus L. in the laboratory and natural water. New Phytologist 99: 183–194.CrossRefGoogle Scholar
  16. Chambert, S. & C. S. James, 2009. Sorting of seeds by hydrochory. River Research and Applications 25: 48–61.CrossRefGoogle Scholar
  17. Deng, Z. M., X. S. Chen, Y. H. Xie, X. Li, Y. Pan & F. Li, 2013. Effects of size and vertical distribution of buds on sprouting and plant growth of the clonal emergent macrophyte Miscanthus sacchariflorus (Poaceae). Aquatic Botany 104: 121–126.CrossRefGoogle Scholar
  18. Elser, J. J., D. R. Dobberfuhl, N. A. MacKay & J. H. Schampel, 1996. Organism size, life history, and N:P stoichiometry. Bioscience 46: 674–684.CrossRefGoogle Scholar
  19. Elser, J. J., R. W. Sterner, E. Gorokhova, W. F. Fagan, T. A. Markow, J. B. Cotner, J. F. Harrison, S. E. Hobbie, G. M. Odell & L. W. Weider, 2000. Biological stoichiometry from genes to ecosystems. Ecology Letters 3: 540–550.CrossRefGoogle Scholar
  20. Hajirezaei, M. R., F. Börnke, M. Peisker, Y. Takahata, J. Lerchl, A. Kirakosyan & U. Sonnewald, 2003. Decreased sucrose content triggers starch breakdown and respiration in stored potato tubers (Solanum tuberosum). Journal of Experimental Botany 54: 477–488.PubMedCrossRefGoogle Scholar
  21. Harada, T. & I. Kimiharu, 2003. Starch degradation and sucrose metabolism during anaerobic growth of pondweed (Potamogeton distinctus A. Benn.) turions. Plant and Soil 253: 125–135.CrossRefGoogle Scholar
  22. James, W. F., J. W. Barko, H. L. Eakin & P. W. Sorge, 2002. Phosphorus budget and management strategies for an urban Wisconsin lake. Lake and Reservoir Management 18: 149–163.CrossRefGoogle Scholar
  23. Jian, Y., B. Li, J. Wang & J. Chen, 2003. Control of turion germination in Potamogeton crispus. Aquatic Botany 75: 59–69.CrossRefGoogle Scholar
  24. Karunagaran, D. & P. Ramakrishna Rao, 1991. Mode and control of starch mobilization during germination of seed of horse gram. Plant Science 73: 155–159.CrossRefGoogle Scholar
  25. Klimešová, J. & L. Klimeš, 2007. Bud banks and their role in vegetative regeneration—a literature review and proposal for simple classification and assessment. Perspectives in Plant Ecology, Evolution and Systematics 8: 115–129.CrossRefGoogle Scholar
  26. Kunii, H., 1989. Continuous growth and clump maintenance of Potamogeton crispus L. in Narutoh river, Japan. Aquatic Botany 33: 13–26.CrossRefGoogle Scholar
  27. Ley, S., K. Dölger & K. J. Appenroth, 1997. Carbohydrate metabolism as a possible physiological modulator of dormancy in turions of Spirodela polyrhiza (L.) Schleiden. Plant Science 129: 1–7.CrossRefGoogle Scholar
  28. Morris, D., 1948. Quantitative determination of carbohydrates with Dreywood’s anthrone reagent. Science 107: 254–255.PubMedCrossRefGoogle Scholar
  29. Okada, M., B. J. Grewell & M. Jasieniuk, 2009. Clonal spread of invasive Ludwigia hexapetala and L. grandiflora in freshwater wetlands of California. Aquatic Botany 91: 123–129.CrossRefGoogle Scholar
  30. Quade, H. W., G. C. van Eeckhout, B. R. Bolduan, J. E. Gannon, C. J. Olson & C. B. Sathrum, 1994. Duck lake diagnostic report, Cleanwater Partnership Phase I. Minnesota Pollution Control Agency, St. Paul, MN.Google Scholar
  31. Riis, T. & K. Sand-Jensen, 2006. Dispersal of plant fragments in small streams. Freshwater Biology 51: 274–286.CrossRefGoogle Scholar
  32. Rivas-Ubach, A., J. Sardans, M. Pérez-Trujillo, M. Estiarte & J. Peñuelas, 2012. Strong relationship between elemental stoichiometry and metabolome in plants. Proceedings of the National Academy of Sciences 109: 4181–4186.CrossRefGoogle Scholar
  33. Rogers, K. H. & C. M. Breen, 1980. Growth and reproduction of Potamogeton crispus in a South African lake. Journal of Ecology 68: 561–571.CrossRefGoogle Scholar
  34. Santamaría, L., 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica 23: 137–154.CrossRefGoogle Scholar
  35. Sarneel, J. M., 2012. The dispersal capacity of vegetative propagules of riparian fen species. Hydrobiologia 710: 219–225.CrossRefGoogle Scholar
  36. Sastroutomo, S. S., 1981. Turions formation, dormancy and germination of curly pondweed, Potamogeton crispus L. Aquatic Botany 10: 161–173.CrossRefGoogle Scholar
  37. Sastroutomo, S. S., I. Ikusima, M. Numata & S. Iizumi, 1979. The importance of turions in the propagation of pondweed (Potamogeton crispus L.). Ecological Review 19: 75–88.Google Scholar
  38. Sculthorpe, C. D., 1967. The Biology of Aquatic Vascular Plants. Edward Arnold, London.Google Scholar
  39. Spencer, D. F., F. J. Ryan, L. Aung & G. G. Ksander, 2001. Soluble sugar concentrations associated with tuber and winter bud sprouting. Journal of Aquatic Plant Management 39: 45–47.Google Scholar
  40. Suzuki, J. I. & J. F. Stuefer, 1999. On the ecological and evolutionary significance of storage in clonal plants. Plant Species Biology 14: 11–17.CrossRefGoogle Scholar
  41. van den Broek, T., R. van Diggelen & R. Bobbink, 2005. Variation in seed buoyancy of species in wetland ecosystems with different flooding dynamics. Journal of Vegetation Science 16: 579–586.Google Scholar
  42. Venable, D. L. & L. Lawlor, 1980. Delayed germination and dispersal in desert annuals: escape in space and time. Oecologia 46: 272–282.CrossRefGoogle Scholar
  43. Weber, J. A. & L. D. Noodén, 2005. The causes of sinking and floating in turions of Myriophyllum verticillatum. Aquatic Botany 83: 219–226.CrossRefGoogle Scholar
  44. Wehrmeister, B. S., 1978. An ecological life history of the pondweed Potamogeton crispus L. in North America. Ohio State University, Columbus: 157.Google Scholar
  45. Winston, R. D. & P. R. Gorham, 1979. Turions and dormancy states in Utricularia vulgaris. Canadian Journal of Botany 57: 2740–2749.CrossRefGoogle Scholar
  46. Witty, M., 2009. Wolffia columbiana can switch between two anatomically and physiologically separate states: buoyant for invasion and starch rich for colonization. International Journal of Botany 5: 307–313.CrossRefGoogle Scholar
  47. Woolf, T. E. & J. D. Madsen, 2003. Seasonal biomass and carbohydrate allocation patterns in Southern Minnesota curlyleaf pondweed populations. Journal of Aquatic Plant Management 41: 113–118.Google Scholar
  48. Wu, J., S. Cheng, W. Liang, F. He & Z. Wu, 2009. Effects of sediment anoxia and light on turion germination and early growth of Potamogeton crispus. Hydrobiologia 628: 111–119.CrossRefGoogle Scholar
  49. Xie, D. & D. Yu, 2011. Turion production and nutrient reserves in Potamogeton crispus are influenced by sediment nutrient level. Aquatic Biology 14: 21–28.CrossRefGoogle Scholar
  50. Xie, Y., D. Yu & X. Geng, 2003. Effects of elevated CO2 concentration on phenotypic, physiological and biochemical characteristics of submersed plant Potamogeton crispus leaf. Acta Phytoecologia Sinica 27: 218–222.Google Scholar
  51. Yemm, E. W. & E. C. Cocking, 1955. The determination of amino acids with ninhydrin. Analyst 80: 209–213.CrossRefGoogle Scholar
  52. Zhang, Y. Y., D. Y. Zhang & S. C. H. Barrett, 2010. Genetic uniformity characterizes the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant. Molecular Ecology 19: 1774–1786.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life ScienceWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations