, Volume 724, Issue 1, pp 203–216 | Cite as

Importance of underwater light field in selecting phytoplankton morphology in a eutrophic reservoir

  • Ming Su
  • Wei An
  • Jianwei Yu
  • Shenling Pan
  • Min Yang
Primary Research Paper


This study attempted to reveal the effect of solar radiation fluctuation on the dynamics of phytoplankton communities expressed as cell morphology in eutrophic water bodies where the impacts of nutrients could be considered as small. Two morphological descriptors were proposed, cellular projected area (\(\varphi_{\rm p}\)) and flattening index (f), which were able to he cellular light-harvesting potential and energy requirement, respectively. A model was established to describe the effects of natural light availability on selecting phytoplankton assemblages with underwater field and mixing process in the water column considered. Based on the data collected from the eutrophic Yanghe Reservoir, the model was derived as \(V=37.92\lambda\varphi_{\rm p} (R^2 = 0.673, P < 0.01),\) where V is bio-volume, λ is a function of solar elevation angle (θ) and mixing/euphotic depth ratio (z mix/z eu) in water, and \(\varphi_{\rm p}.\) Post-analysis of the model results revealed that species with large \(\varphi_{\rm p}\) and f in general have advantages in spring and winter when underwater light availability is low; by contrast, those with small \(\varphi_{\rm p}\) and f have advantages in summer. Larger \(\varphi_{\rm p}\) and f mean that the cells could harvest more light energy and consumed less, allowing them to be selected under low light availability; and vice versa. We thus concluded that the underwater light field probably the most important factor in selecting phytoplankton morphology in eutrophic water bodies.


Phytoplankton succession Cellular projected area Flattening index Phytoplankton morphology Underwater light field zmix/zeu ratio 



We greatly thank Peter Baker who assisted us for the algal taxonomy and identification; we also thank Per Johan Færøvig to give us very good suggestions and comments which improved the work a lot. Finally, we are greatly indebted the editor and reviewers’ comments and suggestions on the manuscript. This work was financially supported by the National Natural Science Foundation of China (50938007, 51221892).

Supplementary material

10750_2013_1734_MOESM1_ESM.pdf (1.2 mb)
PDF (1251 KB)


  1. Bellinger, E. G., 1974. A key to the identification of the more common algae found in British freshwaters. Water Treatment and Examination 23: 76–131.Google Scholar
  2. Benincà, E., J. Huisman, R. Heerkloss, K. D. Jöhnk, P. Branco, E. H. Van Nes, M. Scheffer, & S. P. Ellner, 2008. Chaos in a long-term experiment with a plankton community. Nature 451(7180): 822–825.CrossRefGoogle Scholar
  3. Boehrer, B., & M. Schultze, 2008. Stratification of lakes. Reviews of Geophysics 46(2): RG2005.Google Scholar
  4. Bruggeman, J., & S. A. L. M. Kooijman, 2007. A biodiversity-inspired approach to aquatic ecosystem modeling. Limnology and Oceanography 52(4): 1533–1544.CrossRefGoogle Scholar
  5. Cai, J., W. Li, N. Liu, Y. Sun, & J. Yang, 2006. Investigation and analysis of pollution sources in Yanghe Reservoir. China Rural Water and Hydropower (in Chinese) 9: 51–56.Google Scholar
  6. Clescerl, L. S., A. E. Greenberg, & A. D. Eaton, 1999. Standard Methods for Examination of Water Wastewater, 20th edn. American Public Health Association, American Water Works Association, Water Environment Federation, Washington.Google Scholar
  7. Cuker, B. E., 1983. Grazing and nutrient interactions in controlling the activity and composition of the epilithic algal community of an arctic lake. Limnology and Oceanography 28(1): 133–141.CrossRefGoogle Scholar
  8. Elliott, J. A., C. S. Reynolds, A. E. Irish, & P. Tett, 1999. Exploring the potential of the PROTECH model to investigate phytoplankton community theory. Hydrobiologia 414: 37–43.CrossRefGoogle Scholar
  9. Elliott, J. A., I. D. Jones, & S. J. Thackeray, 2006. Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia 559: 401–411.CrossRefGoogle Scholar
  10. Gao, T., X. Qian, Z. Chu, S. Wang, J. Wu, X. Chuai, & L. Yang, 2010. Effect of climate, hydrological and ecological processes on Yanghe Reservoir’s eutrophication. Journal of Hydroecology (in Chinese) 3(3): 28–31.Google Scholar
  11. Grime, J. P., 1988. The CSR model of primary plant strategies–origins, implications and tests. In Gottlib, L. D. & K. S. Jain (eds), Plant Evolutionary Biology. Springer, Berlin: 371–393.Google Scholar
  12. Kingsolver, J. G., & R. B. Huey, 2008. Size, temperature, and fitness: three rules. Evolutionary Ecology Research 10(2): 251–268.Google Scholar
  13. Kirk, J. T. O., 2011. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.Google Scholar
  14. Komárek, J., & K. Anagnostidis, 1998. Cyanoprokaryota 1, Vol. 19(1). DEU. Gustav Fischer Verlag Jena, Stuttgart.Google Scholar
  15. Komárek, J., & B. Fott, 1983. Das Phytoplankton des Susswassers 7 volume 16. E. Schweizerbart.sche Verlagsbuchhandlung, Stuttgart.Google Scholar
  16. Kruk, C., V. L. M. Huszar, E. T. H. M. Peeters, S. Bonilla, L. Costa, M. Lürling, C. S. Reynolds, & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55(3): 614–627.CrossRefGoogle Scholar
  17. Lewis, W. M., 1976. Surface/volume ratio: implications for phytoplankton morphology. Science 192(4242): 885–887.PubMedCrossRefGoogle Scholar
  18. Li, Z., J. Yu, M. Yang, J. Zhang, M. D. Burch, & W. Han, 2010. Cyanobacterial population and harmful metabolites dynamics during a bloom in Yanghe Reservoir, North China. Harmful Algae 9(5): 481–488.CrossRefGoogle Scholar
  19. Ling, H. U., & A. T. Peter, 2000. Australian Freshwater Algae (exclusive of diatoms), Vol. 5. J. Cramer in der Gebrueder Borntraeger Verlagsbuchhandlung Antarctic Division, Channel Highway, Kingston.Google Scholar
  20. Litchman, E., P. de Tezanos Pinto, C. A. Klausmeier, M. K. Thomas & K. Yoshiyama, 2010. Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia 653(1): 15–28.CrossRefGoogle Scholar
  21. Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1(4): 493–509.Google Scholar
  22. Naselli-Flores, L., 2000. Phytoplankton assemblages in twenty-one Sicilian reservoirs: relationships between species composition and environmental factors. Hydrobiologia 424:1–11.CrossRefGoogle Scholar
  23. Naselli-Flores, L., & R. Barone, 2003. Steady-state assemblages in a Mediterranean hypertrophic reservoir. The role of Microcystis ecomorphological variability in maintaining an apparent equilibrium. Hydrobiologia 502: 133–143.CrossRefGoogle Scholar
  24. Naselli-Flores, L., & R. Barone, 2005. Water-level fluctuations in Mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia 548(1): 85–99.CrossRefGoogle Scholar
  25. Naselli-Flores, L., & R. Barone, 2007. Pluriannual morphological variability of phytoplankton in a highly productive Mediterranean Reservoir (Lake Arancio, Southwestern Sicily). Hydrobiologia 578: 87–95.CrossRefGoogle Scholar
  26. Naselli-Flores, L., & R. Barone, 2011. Fight on plankton! Or, phytoplankton shape and size as adaptive tools to get ahead in the struggle for life. Cryptogamie Algologie 32(2): 157–204.CrossRefGoogle Scholar
  27. Naselli-Flores, L., J. Padisák, & M. Albay, 2007. Shape and size in phytoplankton ecology: do they matter? Hydrobiologia 578: 157–161.CrossRefGoogle Scholar
  28. O’Farrell, I., P. Tezanos Pinto, & I. Izaguirre, 2007. Phytoplankton morphological response to the underwater light conditions in a vegetated wetland. Hydrobiologia 578: 65–77.CrossRefGoogle Scholar
  29. Oliver, R. L., B. T. Hart, J. Olley, M. Grace, C. Rees, & G. Caitcheon, 1999. The Darling River: algal growth and the cycling and sources of nutrients. CRC for Freshwater Ecology, Canberra.Google Scholar
  30. Örnólfsdóttir, E. B., S. E. Lumsden, & J. L. Pinckney, 2004. Nutrient pulsing as a regulator of phytoplankton abundance and community composition in Galveston Bay, Texas. Journal of Experimental Marine Biology and Ecology 303(2): 197–220.CrossRefGoogle Scholar
  31. Padisák, J., É. Soróczki-Pintér, & Z. Rezner, 2003. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton—an experimental study. Hydrobiologia 500: 243–257.CrossRefGoogle Scholar
  32. Padisák, J., L. O. Crossetti, & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621(1): 1–19.CrossRefGoogle Scholar
  33. Palmer, J. M., & B. G. Grant, 2010. The Art of Radiometry. SPIE Press Monograph. SPIE Press, San Francisco.Google Scholar
  34. Prescott, G. W., 1951. Algae of the Western great lakes area: exclusive of desmids and diatoms. Cranbrook Institute of Science, Bloomfield Hills, MI.Google Scholar
  35. Reda, I., & A. Andreas, 2004. Solar position algorithm for solar radiation applications. Solar Energy 76(5): 577–589.CrossRefGoogle Scholar
  36. Reynolds, C. S., 1997. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Ecology Institute, Oldendorf.Google Scholar
  37. Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  38. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores, & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24(5): 417–428.CrossRefGoogle Scholar
  39. Smestad, G. P., 1998. Education and solar conversion:: demonstrating electron transfer. Solar Energy Materials and Solar Cells 55(1–2): 157–178.CrossRefGoogle Scholar
  40. Taguchi, S., 1976. Relationship between photosynthesis and cell size of marine diatoms. Journal of Phycology 12(2): 185–189.Google Scholar
  41. Talling, J. F., 1965. The photosynthetic activity of phytoplankton in East African lakes. Internationale Revue der gesamten Hydrobiologie und Hydrographie 50(1): 1–32.CrossRefGoogle Scholar
  42. Utermöhl, H., 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.Google Scholar
  43. Weithoff, G., 2003. The concepts of ‘plant functional types’ and ‘functional diversity’ in lake phytoplankton—a new understanding of phytoplankton ecology? Freshwater Biology 48(9): 1669–1675.CrossRefGoogle Scholar
  44. Woolf, H. M., 1968. On the computation of solar elevation angles and the determination of sunrise and sunset times. National Aeronautics and Space Administration, Washington, D.C.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ming Su
    • 1
  • Wei An
    • 1
  • Jianwei Yu
    • 1
  • Shenling Pan
    • 1
  • Min Yang
    • 1
  1. 1.State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations