, Volume 722, Issue 1, pp 279–290 | Cite as

Variance partitioning of deconstructed periphyton communities: does the use of biological traits matter?

  • Vanessa M. Algarte
  • Liliana Rodrigues
  • Victor L. Landeiro
  • Tadeu Siqueira
  • Luis Mauricio Bini
Primary Research Paper


The use of species traits offers a promising approach to the understanding of the main processes underlying metacommunity patterns. We analyzed samples of periphytic algae in 30 environments of the Upper Paraná River floodplain in southeastern Brazil, to test the hypotheses that variation in species composition of algal groups with low dispersal abilities would be mainly explained by spatial variables; on the other hand, algal groups with higher dispersal abilities would be better explained by environmental variables. The variation in community structure was mainly correlated with environmental variables. This result is in line with a growing body of evidence indicating a predominant role of species-sorting processes. The more-refined prediction that the spatial variables would gradually become more important across a gradient of adherence or size was, however, not supported by our analyses. Also, the large unexplained variation suggested that these periphytic communities were assembled by idiosyncratic events, or that other variables that are often neglected in studies of aquatic metacommunities needed to be included.


Metacommunity Periphyton pRDA Environmental variables Aquatic communities Floodplain 



We thank Jaime Luiz Lopes Pereira for designing the map, and CAPES for granting a scholarship to the first author. We would like to thank two anonymous reviewers for their helpful comments on the manuscript. This study was supported by the “Long-Term Ecological Research” (LTER) program of CNPq. Liliana Rodrigues and Luis Mauricio Bini have been supported by CNPq productivity grants.


  1. Abe, S., K. Uchida, T. Nagumo & J. Tanaka, 2007. Alterations in the biomass-specific productivity of periphyton assemblages mediate by fish grazing. Freshwater Biology 52: 1486–1493.CrossRefGoogle Scholar
  2. Agostinho, A. A., F. M. Pelicice, A. C. Petry, L. C. Gomes & H. F. Júlio Jr., 2007. Fish diversity in the upper Paraná River basin: habitats, fisheries, management and conservation. Aquatic Ecosystem Health & Management 10: 174–186.CrossRefGoogle Scholar
  3. Anagnostidis, K. & J. Komárek, 1988. Morden approach to the classification system of Cyanophytes. 3. Oscillatoriales. Archiv für Hydrobiologie (Algological Studies) 50–53 (suppl. 80): 327–472.Google Scholar
  4. Astorga, A., J. Oksanen, M. Luoto, J. Soininen, R. Virtanen & T. Muotka, 2012. Distance decay of similarity in freshwater communities: do macro- and microorganisms follow the same rules? Global Ecology and Biogeography 21: 365–375.CrossRefGoogle Scholar
  5. Beisner, B. E., P. R. Peres-Neto, E. S. Lindstrom, A. Barnett & M. L. Longhi, 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87: 2985–2991.PubMedCrossRefGoogle Scholar
  6. Bicudo, D. C., 1990. Considerações sobre metodologia de contagem de algas do perifíton. Acta Limnologica Brasiliensia 3: 459–475.Google Scholar
  7. Bicudo, C. E. M. & M. Menezes, 2006. Gêneros de algas de águas continentais do Brasil: chave para identificação e descrições. RiMa, São Carlos.Google Scholar
  8. Biggs, B. J. F., R. J. Stevenson & R. L. Lowe, 1998. A habitat matrix conceptual model for stream periphyton. Archiv für Hydrobiologie 143: 21–56.Google Scholar
  9. Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecology 89: 2623–2632.PubMedCrossRefGoogle Scholar
  10. Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153: 51–68.CrossRefGoogle Scholar
  11. Borcard, D., F. Gillet & L. Legendre, 2011. Numerical Ecology with R. Springer, New York.CrossRefGoogle Scholar
  12. Brunbjerg, A. N., R. Ejrnaes & J.-C. Svenning, 2012. Species sorting dominates plant metacommunity structure in coastal dunes. Acta Oecologica 39: 33–42.CrossRefGoogle Scholar
  13. Burliga, A. L. M., A. Schwarzbold, E. A. Lobo & V. D. Pillar, 2004. Functional types in epilithon algae communities of the Maquiné River, Rio Grande do Sul, Brazil. Acta Limnologica Brasiliensia 16: 369–380.Google Scholar
  14. Cerná, K., 2010. Small-scale spatial variation of benthic algal assemblages in a peat bog. Limnologica 40: 315–321.CrossRefGoogle Scholar
  15. Cottenie, K., 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182.PubMedCrossRefGoogle Scholar
  16. Croasdale, H. T. & E. A. Flint, 1986. Flora of New Zealand: Freshwater Algae, Chlorophyta, Desmids with Ecological Comments on their Habitats, 1. Government Printing Office, Wellington.Google Scholar
  17. Croasdale, H. T. & E. A. Flint, 1988. Flora of New Zealand: Freshwater Algae, Chlorophyta, Desmids with Ecological Comments on their Habitats, 2. The Caxton Press, Christchurch.Google Scholar
  18. De Bie, T., L. De Meester, L. Brendonck, K. Martens, B. Goddeeris, D. Ercken, H. Hampel, L. Denys, L. Vanhecke, K. Van der Gucht, J. Van Wichelen, W. Vyverman & S. A. J. Declerck, 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters 15: 740–747.PubMedCrossRefGoogle Scholar
  19. Dillard, G. E., 1990. Freshwater algae of the Southeastern United States. Part 3. Chlorophyceae: Zygnematales: Zygnemataceae, Mesotaeniaceae and Desmidiaceae (Section 1). Bibliotheca Phycologica 85: 1–172.Google Scholar
  20. Dillard, G. E., 1991. Freshwater algae of the Southeastern United States. Part 4. Chlorophyceae: Zygnematales: Desmidiaceae (Section 2). Bibliotheca Phycologica 89: 1–205.Google Scholar
  21. Diniz-Filho, J. A. F. & L. M. Bini, 2005. Modelling geographical patterns in species richness using eigenvector-based spatial filters. Global Ecology and Biogeography 14: 177–185.CrossRefGoogle Scholar
  22. Diniz-Filho, J. A. F., T. Siqueira, A. A. Padial, T. F. Rangel, V. L. Landeiro & L. M. Bini, 2012. Spatial autocorrelation analysis allows disentangling the balance between neutral and niche processes in metacommunities. Oikos 121: 201–210.CrossRefGoogle Scholar
  23. Dray, S., P. Legendre & P. Peres-Neto, 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 196: 483–493.CrossRefGoogle Scholar
  24. Ferragut, C. & D. C. Bicudo, 2010. Periphytic algal community adaptive strategies in N and P enriched experiments in a tropical oligotrophic reservoir. Hydrobiologia 646: 295–309.CrossRefGoogle Scholar
  25. Gilbert, B. & J. R. Bennett, 2010. Partitioning variation in ecological communities: do the numbers add up? Journal of Applied Ecology 47: 1071–1082.CrossRefGoogle Scholar
  26. Gilbert, B. & M. J. Lechowicz, 2004. Neutrality, niches, and dispersal in a temperate forest understory. Proceedings of the National Academy of Sciences of the United States of America 101: 7651–7656.PubMedCrossRefGoogle Scholar
  27. Giné, M. F., H. Bergamin, E. A. G. Zagatto & B. F. Reis, 1980. Simultaneus determination of nitrite and nitrate by flow injection analysis. Analytica Chimica Acta 114: 191–197.CrossRefGoogle Scholar
  28. Graham, L. E. & L. W. Wilcox, 2000. Algae. Prentice Hall, Upper Saddle River, NJ.Google Scholar
  29. Griffith, D. A. & P. R. Peres-Neto, 2006. Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87: 2603–2613.PubMedCrossRefGoogle Scholar
  30. Hájek, M., J. Rolecek, K. Cottenie, K. Kintrová, M. Horsák, A. Poulícková, P. Hájková, M. Fránková & D. Díte, 2011. Environmental and spatial controls of biotic assemblages in a discrete semi-terrestrial habitat: comparison of organisms with different dispersal abilities sampled in the same plots. Journal of Biogeography 38: 1683–1693.CrossRefGoogle Scholar
  31. Heino, J., L. M. Bini, S. M. Karjalainen, H. Mykra, J. Soininen, L. C. G. Vieira & J. A. F. Diniz-Filho, 2010. Geographical patterns of micro-organismal community structure: are diatoms ubiquitously distributed across boreal streams? Oikos 119: 129–137.CrossRefGoogle Scholar
  32. Heino, J., M. Grönroos, J. Soininen, R. Virtanen & T. Muotka, 2012. Context dependency and metacommunity structuring in boreal headwater streams. Oikos 121: 537–544.CrossRefGoogle Scholar
  33. Holyoak, M., M. A. Leibold & R. D. Holt, 2005. Metacommunities: Spatial Dynamics and Ecological Communities. The University of Chicago Press, Chicago.Google Scholar
  34. Hoverman, J. T., C. J. Davis, E. E. Werner, D. K. Skelly, R. A. Relyea & L. Yurewicz, 2011. Environmental gradients and the structure of freshwater snail communities. Ecography 34: 1049–1058.CrossRefGoogle Scholar
  35. Hubbell, S. P., 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ.Google Scholar
  36. Jackson, D. A., 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204–2214.CrossRefGoogle Scholar
  37. Komárek, J. & K. Anagnostidis, 1986. Modern approach to the classification system of Cyanophytes. 2. Chroococcales. Archiv für Hydrobiologie (Algological Studies) 43 (suppl. 73): 157–226.Google Scholar
  38. Komárek, J. & K. Anagnostidis, 1989. Modern approach to the classification system of Cyanophytes. 4. Nostocales. Archiv für Hydrobiologie (Algological Studies) 56 (suppl. 82): 247–345.Google Scholar
  39. Koroleff, K. J. H., 1976. Determination of ammonia. In Grasshoff, E. & E. Kremling (eds), Methods of Seawater Analysis. Verlag Chemie Wheinhein, New York: 117–181.Google Scholar
  40. Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae: Naviculaceae. In Ettl, H., J. Gerloff, H. Heyning & D. Mollenhauer (eds), Süsswasser flora von Mitteleuropa, Band 2/1. Gustav Fischer Verlag, Heidelberg.Google Scholar
  41. Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae: Bacillariaceae, Epithemiaceae, Surirellaceae. In Ettl, H., J. Gerloff, H. Heyning & D. Mollenhauer (eds), Süsswasser flora von Mitteleuropa, Band 2/2. Gustav Fischer Verlag, Heidelberg.Google Scholar
  42. Krammer, K. & H. Lange-Bertalot, 1991. Bacillariophyceae: Centrales, Fragilariaceae, Eunotiaceae. In Ettl, H., J. Gerloff, H. Heyning & D. Mollenhauer (eds), Süsswasser flora von Mitteleuropa, Band 2/3. Gustav Fischer Verlag, Heidelberg.Google Scholar
  43. Landeiro, V. L., L. M. Bini, F. R. C. Costa, E. Franklin, A. Nogueira, J. L. P. de Souza, J. Moraes & W. E. Magnusson, 2012a. How far can we go in simplifying biomonitoring assessments? An integrated analysis of taxonomic surrogacy, taxonomic sufficiency and numerical resolution in a megadiverse region. Ecological Indicators 23: 366–373.CrossRefGoogle Scholar
  44. Landeiro, V. L., L. M. Bini, A. S. Melo, A. M. O. Pes & W. E. Magnusson, 2012b. The roles of dispersal limitation and environmental conditions in controlling caddisfly (Trichoptera) assemblages. Freshwater Biology 57: 1554–1564.CrossRefGoogle Scholar
  45. Langenheder, S. & H. Ragnarsson, 2007. The role of environmental and spatial factors for the composition of aquatic bacterial communities. Ecology 88: 2154–2161.PubMedCrossRefGoogle Scholar
  46. Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.CrossRefGoogle Scholar
  47. Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier, Amsterdam.Google Scholar
  48. Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.CrossRefGoogle Scholar
  49. Logue, J. B., N. Mouquet, H. Peter & H. Hillebrand, 2011. Empirical approaches to metacommunities: a review and comparison with theory. Trends in Ecology and Evolution 26: 482–491.PubMedCrossRefGoogle Scholar
  50. Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and statistical basis of estimation by counting. Hydrobiologia 11: 143–170.CrossRefGoogle Scholar
  51. Mackereth, F. J. H., J. Heron & J. F. Talling, 1978. Water Analysis: Some Revised Methods for Limnologists. Freshwater Biological Association, New York.Google Scholar
  52. Melo, A. S., F. Schneck, L. U. Hepp, N. R. Simões, T. Siqueira & L. M. Bini, 2011. Focusing on variation: methods and applications of the concept of beta diversity in aquatic ecosystems. Acta Limnologica Brasiliensia 23: 318–331.CrossRefGoogle Scholar
  53. Mihaljevic, J. R., 2012. Linking metacommunity theory and symbiont evolutionary ecology. Trends in Ecology and Evolution 27: 323–329.PubMedCrossRefGoogle Scholar
  54. Mouquet, N. & M. Loreau, 2003. Community patterns in source-sink metacommunities. American Naturalist 162: 544–557.PubMedCrossRefGoogle Scholar
  55. Nabout, J. C., T. Siqueira, L. M. Bini & I. S. Nogueira, 2009. No evidence for environmental and spatial processes in structuring phytoplankton communities. Acta Oecologica 35: 720–726.CrossRefGoogle Scholar
  56. O’Malley, M. A., 2007. The nineteenth century roots of ‘everything is everywhere’. Nature Reviews 5: 647–651.PubMedCrossRefGoogle Scholar
  57. Özkan, K., J.-C. Sevenning & E. Jeppensen, 2013. Environmental species sorting dominates forest-bird community assembly across scales. Journal of Animal Ecology 82: 266–274.PubMedCrossRefGoogle Scholar
  58. Padial, A. A., T. Siqueira, J. Heino, L. C. G. Vieira, C. C. Bonecker, F. A. Lansac-Tôha, L. C. Rodrigues, A. M. Takeda, S. Train, L. M. V. Velho & L. M. Bini, 2012. Relationships between multiple biological groups and classification schemes in a Neotropical floodplain. Ecological Indicators 13: 55–65.CrossRefGoogle Scholar
  59. Pan, Y., R. J. Stevenson, B. H. Hill & A. T. Herlihy, 2010. Ecoregions and benthic diatom assemblages in Mid-Atlantic Highlands streams, USA. Journal of the North American Benthological Society 19: 518–540.CrossRefGoogle Scholar
  60. Pandit, S. N., J. Kolasa & K. Cottenie, 2009. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90: 2253–2262.PubMedCrossRefGoogle Scholar
  61. Passy, S. I., 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany 86: 171–178.CrossRefGoogle Scholar
  62. Passy, S. I., 2012. A hierarchical theory of macroecology. Ecology Letters 15: 923–934.PubMedCrossRefGoogle Scholar
  63. Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.PubMedCrossRefGoogle Scholar
  64. Prescott, G. W., H. T. Croasdale, W. C. Vinyard & C. E. M. Bicudo, 1981. A Synopsis of North American Desmids. Part 2. Desmidiaceae: Placodermae. Section 3. In Prescott, G. W. (ed.), Desmidiales. University Nebraska Press, Lincoln.Google Scholar
  65. Prescott, G. W., 1982. Algae of the Western Great Lakes Area. Otto Koeltz Science Publishers, Königstein.Google Scholar
  66. Prescott, G. W., C. E. M. Bicudo & W. C. Vinyard, 1982. A Synopsis of North American Desmids. Part 2. Desmidiaceae: Placodermae. Section 4. In Prescott, G. W. (ed.), Desmidiales. University Nebraska Press, Lincoln.Google Scholar
  67. R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. URL http://www.R-project.org/.
  68. Round, F. E., R. M. Crawford & D. G. Mann, 1990. The Diatoms: Biology and Morphology of the Genera. Cambridge University Press, Cambridge.Google Scholar
  69. Siqueira, T., L. M. Bini, F. O. Roque, S. R. M. Couceiro, S. Trivinho-Strixino & K. Cottenie, 2012. Common and rare species respond to similar niche processes in macroinvertebrate metacommunities. Ecography 35: 183–192.CrossRefGoogle Scholar
  70. Smith, T. W. & J. T. Lundholm, 2010. Variation partitioning a tool to distinguish between niche and neutral process. Ecography 33: 648–655.CrossRefGoogle Scholar
  71. Soininen, J. & J. Weckström, 2009. Diatom community structure along environmental and spatial gradients in lakes and streams. Fundamental and Applied Limnology 174: 205–213.CrossRefGoogle Scholar
  72. Soininen, J., R. Paavola & T. Muotka, 2004. Benthic diatom communities in boreal streams: community structure in relation to environmental and spatial gradients. Ecography 27: 330–342.CrossRefGoogle Scholar
  73. Souza-Filho, E. E., P. C. Rocha, E. Comunello & J. C. Stevaux, 2004. Effects of the Porto Primavera Dam on Physical environment of the downstream floodplain. In Thomaz, S. M., A. A. Agostinho & N. S. Hahn (eds), The Upper Paraná River and its Floodplain: Physical Aspects, Ecology and Conservation. Backhuys Publishers, Leiden: 55–74.Google Scholar
  74. Stevaux, J. C., 1994. The upper Paraná River (Brazil): Geomorphology, sedimentology and paleoclimatology. Quaternary International 21: 143–161.CrossRefGoogle Scholar
  75. Stevaux, J. C., D. P. Martins & M. Meurer, 2009. Changes in a large regulated tropical river: the Paraná River downstream from the Porto Primavera Dam, Brazil. Geomorphology 113: 230–238.CrossRefGoogle Scholar
  76. Thomaz, S. M., D. C. Souza & L. M. Bini, 2003. Species richness and beta diversity of aquatic macrophytes in a large subtropical reservoir (Itaipu Reservoir, Brazil): the influence of limnology and morphometry. Hydrobiologia 505: 119–128.CrossRefGoogle Scholar
  77. Thompson, R. & C. Townsend, 2006. A truce with neutral theory: local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates. Journal of Animal Ecology 75: 476–484.PubMedCrossRefGoogle Scholar
  78. Utermöhl, H., 1958. Zur Vervollkmmnung der quantitativen phytoplankton-methodic. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.Google Scholar
  79. Van der Gucht, K., K. Cottenie, K. Muylaert, N. Vloemans, S. Cousin, S. Declerck, E. Jeppesen, J. M. Conde-Porcuna, K. Schwenk, G. Zwart, H. Degans, W. Vyverman & L. De Meester, 2007. The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proceedings of the National Academic Science 104: 20404–20409.CrossRefGoogle Scholar
  80. Vanormelingen, P., K. Cottenie, E. Michels, K. Muylaert, W. Vyverman & L. De Meester, 2008. The relative importance of dispersal and local processes in structuring phytoplankton communities in a set of highly interconnected ponds. Freshwater Biology 53: 2170–2183.Google Scholar
  81. Wetzel, R. G., 1983. Periphyton of Freshwater Ecosystems. Dr. W. Junk Publishers, The Hague.CrossRefGoogle Scholar
  82. Wetzel, C. E., D. C. Bicudo, L. Ector, E. A. Lobo, J. Soininen, V. L. Landeiro & L. M. Bini, 2012. Distance decay of similarity in Neotropical diatom communities. Plos One 7: e 45071.Google Scholar
  83. Wilson, D. S., 1992. Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73: 1984–2000.CrossRefGoogle Scholar
  84. Winegardner, A. K., B. K. Jones, I. S. Y. Ng, T. Siqueira & K. Cottenie, 2012. The terminology of metacommunity ecology. Trends in Ecology & Evolution 27: 253–254.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Vanessa M. Algarte
    • 1
  • Liliana Rodrigues
    • 1
  • Victor L. Landeiro
    • 2
  • Tadeu Siqueira
    • 3
  • Luis Mauricio Bini
    • 4
  1. 1.Departamento de Biologia, NupéliaUniversidade Estadual de MaringáMaringáBrazil
  2. 2.Departamento de Botânica e EcologiaUniversidade Federal de Mato GrossoCuiabáBrazil
  3. 3.Departamento de EcologiaUniversidade Estadual PaulistaRio ClaroBrazil
  4. 4.Departamento de EcologiaUniversidade Federal de GoiásGoiâniaBrazil

Personalised recommendations