, Volume 722, Issue 1, pp 183–198 | Cite as

Evidence for consumer regulation of biofilm–nutrient interactions among hardwater streams (Pennsylvania, USA)

  • Rebecca A. Eckert
  • Hunter J. Carrick
Primary Research Paper


Experimental studies evaluating the simultaneous effects of consumers, nutrients, and other biotic/abiotic factors on intact, natural food webs are rare, particularly among ecosystems of varying trophic conditions. We conducted a series of in situ studies that used nutrient-diffusing substrata with nitrogen (N) and phosphorus (P) concentrations in a full factorial design in three temperate, limestone streams in Pennsylvania across a trophic gradient (mesotrophic, eutrophic, and hypereutrophic streams). We assessed differences in algal and macroinvertebrate biomass, taxonomic composition, and functional groups relative to amended nutrients across the trophic gradient; as such, these results facilitated predictions about regulators of food web structure. All factors varied significantly among the streams (e.g., algal biomass P = 0.005, macroinvertebrate biomass P < 0.001, algal diversity P = 0.006, macroinvertebrate diversity P < 0.001, algal group P < 0.001, macroinvertebrate guilds P < 0.001); the streams, however, did not exhibit simple responses to nutrient amendment. Algal and macroinvertebrate biomass and diversity responded greatest in the mesotrophic stream while grazing seemed to be a strong factor preventing algal nutrient response in the eutrophic and hypereutrophic streams. Brillouin’s Evenness Index was most influenced by nutrient amendment (nutrient effect on algae and macroinvertebrates P = 0.021). As such, we concluded that biomass and diversity were mediated by complexity within intermediate trophic levels.


Diversity Macroinvertebrate Grazing Algae Chironomidae 



The authors would like to thank J. Stauffer and G. Hoover for constructive feedback and suggestions on this work as well as K. Price for comments on a previous version of this manuscript. Funding for this project was provided by the Pennsylvania Department of Environmental Protection Grant 4300227693. The paper is contribution number 33, Institute for Great Lakes, Central Michigan University.


  1. Abrams, P. A., 1995. Monotonic or unimodal diversity-productivity gradients: what does competition theory predict? Ecology 76: 2019–2027.CrossRefGoogle Scholar
  2. Armitage, A. R. & P. Fong, 2004. Upward cascading effects of nutrients: shifts in a benthic microalgal community and a negative herbivore response. Oecologia 139: 560–567.PubMedCrossRefGoogle Scholar
  3. Baker, A. S. & A. J. McLachlan, 1979. Food preferences of Tanypodinae larvae (Diptera: Chironomidae). Hydrobiologia 62: 283–288.CrossRefGoogle Scholar
  4. Bascompte, J., C. J. Melián & E. Sala, 2005. Interaction strength combinations and the overfishing of a marine food web. Proceedings of the National Academy of Sciences of the United States of America 102: 5443–5447.PubMedCrossRefGoogle Scholar
  5. Baumgärtner, D. & K.-O. Rothhaupt, 2003. Predictive length–dry mass regressions for freshwater invertebrates in a pre-alpine lake littoral. International Review of Hydrobiology 88: 453–463.CrossRefGoogle Scholar
  6. Benke, A. C., 1990. A perspective on America’s vanishing streams. Journal of the North American Benthological Society 9: 77–88.CrossRefGoogle Scholar
  7. Benke, A. C., A. D. Huryn, L. A. Smock & J. B. Wallace, 1999. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society 18: 308–343.CrossRefGoogle Scholar
  8. Biggs, B. J. F., 1988. Artificial substrate exposure times for periphyton biomass estimates in rivers. New Zealand Journal of Marine and Freshwater Research 22: 507–515.CrossRefGoogle Scholar
  9. Biggs, B. J. F., 2000. Eutrophication of streams and rivers: dissolved nutrient–chlorophyll relationships for benthic algae. Journal of the North American Benthological Society 19: 17–31.CrossRefGoogle Scholar
  10. Biggs, B. J. F. & M. E. Close, 1989. Periphyton biomass dynamics in gravel bed rivers: the relative effects of flows and nutrients. Freshwater Biology 22: 209–231.CrossRefGoogle Scholar
  11. Biggs, R., S. R. Carpenter & W. A. Brock, 2009. Spurious certainty: how ignoring measurement error and environmental heterogeneity may contribute to environmental controversies. BioScience 59: 65–76.CrossRefGoogle Scholar
  12. Burford, M. A., A. T. Revill, D. W. Palmer, L. Clementson, B. J. Robson & I. T. Webster, 2011. River regulation alters drivers of primary productivity along a tropical river-estuary system. Marine and Freshwater Research: Advances in the Aquatic Sciences 62: 141–151.Google Scholar
  13. Burky, A. J., 1971. Biomass turnover, respiration, and interpopulation variation in the stream limpet Ferrissia rivularis (Say). Ecological Monographs 41: 235–251.CrossRefGoogle Scholar
  14. Butzler, J. M., 2002. The role of nutrient variability in aquatic ecosystems. MS Thesis. University of Pittsburgh, Pittsburgh.Google Scholar
  15. Cardinale, B. J., M. A. Palmer, A. R. Ives & S. S. Brooks, 2005. Diversity–productivity relationships in streams vary as a function of the natural disturbance regime. Ecology 86: 716–726.CrossRefGoogle Scholar
  16. Carrick, H. J. & A. D. Steinman, 2001. Variation in periphyton biomass and species composition in Lake Okeechobee, Florida (USA): distribution of algal guilds along environmental gradients. Archiv Für Hydrobiologie 152: 3411–3438.Google Scholar
  17. Carrick, H. J. & K. J. Price, 2011. Determining variation in TMDL reduction criteria. Final Report, Pennsylvania Department of Environmental Protection Report: 84.Google Scholar
  18. Carrick, H. J., A. Scanlan & R. Kolar, 2009. Use of periphyton to estimate TMDL endpoints. Final Report, Pennsylvania Department of Environmental Protection Report: 57.Google Scholar
  19. Carrick, H. J., F. J. Aldridge & C. L. Schelske, 1993. Wind influences phytoplankton biomass and composition in a shallow, productive lake. Limnology and Oceanography 38: 1179–1192.CrossRefGoogle Scholar
  20. Carrick, H. J., R. L. Lowe & J. T. Rotenberry, 1988. Guilds of benthic algae along nutrient gradients: relationships to algal community diversity. Journal of the North American Benthological Society 7: 117–128.CrossRefGoogle Scholar
  21. Codd, G. A., S. G. Bell & W. P. Brooks, 1989. Cyanobacterial toxins in water. Water Science and Technology 21: 1–13.Google Scholar
  22. Corkum, L. D., 1992. Spatial distributional patterns of macroinvertebrates along rivers within and among biomes. Hydrobiologia 239: 101–114.CrossRefGoogle Scholar
  23. Corkum, L. D., 1996. Responses of chlorophyll-a, organic matter, and macroinvertebrates to nutrient additions in rivers flowing through agricultural and forested land. Archiv für Hydrobiologia 136: 391–411.Google Scholar
  24. Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147–172.CrossRefGoogle Scholar
  25. Cyr, H. & M. L. Pace, 1993. Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 361: 148–150.CrossRefGoogle Scholar
  26. DeNicola, D. M., C. D. McIntire, G. A. Lamberti, S. V. Gregory & L. R. Ashkenas, 1990. Temporal patterns of grazer–periphyton interactions in laboratory streams. Freshwater Biology 23: 475–489.CrossRefGoogle Scholar
  27. Dodds, W. K., J. R. Jones & E. B. Welch, 1998. Suggested classification of stream trophic state: distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Research 32: 1455–1462.CrossRefGoogle Scholar
  28. Dodds, W. K., V. H. Smith & K. Lohman, 2002. Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams. Canadian Journal of Fisheries and Aquatic Sciences 59: 865–874.CrossRefGoogle Scholar
  29. Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda, and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.CrossRefGoogle Scholar
  30. Eckblad, J. W., 1971. Weight–length regression models for three aquatic gastropod populations. American Midland Naturalist 85: 217–274.CrossRefGoogle Scholar
  31. Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 1135–1142.PubMedCrossRefGoogle Scholar
  32. Fairchild, G. W., R. L. Lowe & W. B. Richardson, 1985. Algal periphyton growth on nutrient-diffusing substrates: an in situ bioassay. Ecology 66: 465–472.CrossRefGoogle Scholar
  33. Fairchild, M. P. & J. R. Holomuzki, 2005. Multiple predator effects on microdistributions, survival, and drift of stream hydropsychid caddisflies. Journal of the North American Benthological Society 24: 101–112.CrossRefGoogle Scholar
  34. Francoeur, S. N., 2001. Meta-analysis of lotic nutrient amendment experiments: detecting and quantifying subtle responses. Journal of the North American Benthological Society 20: 358–368.CrossRefGoogle Scholar
  35. Gasol, J. M., P. A. del Giorgio & C. M. Duarte, 1997. Biomass distribution in marine planktonic communities. Limnology and Oceanography 42: 1343–1363.CrossRefGoogle Scholar
  36. Ghosh, M. & J. P. Gaur, 1998. Current velocity and the establishment of stream algal periphyton communities. Aquatic Botany 60: 1–10.CrossRefGoogle Scholar
  37. Godwin, C. M., M. A. Arthur & H. J. Carrick, 2009. Periphyton nutrient status in a temperate stream with mixed land-uses: implications for watershed nitrogen storage. Hydrobiologia 623: 141–152.CrossRefGoogle Scholar
  38. Goldfinch, A. C. & K. R. Carman, 2000. Chironomid grazing on benthic microalgae in a Louisiana salt marsh. Estuaries 23(536): 547.Google Scholar
  39. Gruner, D. S., J. E. Smith, E. W. Seabloom, S. A. Sandin, J. T. Ngai, H. Hillebrand, W. S. Harpole, J. J. Elser, E. E. Cleland, M. E. S. Bracken, E. T. Borer & B. M. Bolker, 2008. A cross-system synthesis of consumer and nutrient resource control on producer biomass. Ecology Letters 11: 740–755.PubMedCrossRefGoogle Scholar
  40. Hautier, Y., P. A. Niklaus & A. Hector, 2009. Competition for light causes plant biodiversity loss after eutrophication. Science 324: 636–638.PubMedCrossRefGoogle Scholar
  41. Hill, W. R., M. G. Ryon & E. M. Schilling, 1995. Light limitation in a stream ecosystem: responses by primary producers and consumers. Ecology 76: 1297–1309.CrossRefGoogle Scholar
  42. Hillebrand, H., 2002. Top–down versus bottom–up control of autotrophic biomass: a meta-analysis on experiments with periphyton. Journal of the North American Benthological Society 21: 349–369.CrossRefGoogle Scholar
  43. Holomuzki, J. R., J. W. Feminella & M. E. Power, 2010. Biotic interactions in freshwater benthic habitats. Journal of the North American Benthological Society 29: 220–244.CrossRefGoogle Scholar
  44. Huryn, A. D., 1998. Ecosystem-level evidence for top–down and bottom–up control of production in a grassland stream system. Oecologia 115: 173–183.CrossRefGoogle Scholar
  45. Kassen, R., A. Buckling, G. Bell & P. B. Rainey, 2000. Diversity peaks at intermediate productivity in a laboratory microcosm. Nature 406: 508–512.PubMedCrossRefGoogle Scholar
  46. Lamberti, G. A. & V. H. Resh, 1983. Stream periphyton and insect herbivores: an experimental study of grazing by a caddisfly population. Ecology 64: 1124–1135.CrossRefGoogle Scholar
  47. Lamberti, G. A., L. R. Ashkenas, S. V. Gregory & A. D. Steinman, 1987. Effects of three herbivores on periphyton communities in laboratory streams. Journal of the North American Benthological Society 6: 92–104.CrossRefGoogle Scholar
  48. Liebold, M. A., 1999. Biodiversity and nutrient enrichment in pond plankton communities. Evolutionary Ecology Research 1: 73–95.Google Scholar
  49. Matthaei, C. D., U. Uehlinger, E. I. Meyer & A. Frutiger, 1996. Recolonization by benthic invertebrates after experimental disturbance in a Swiss prealpine river. Freshwater Biology 35: 233–248.CrossRefGoogle Scholar
  50. McIntosh, A. R., H. S. Greig, S. A. McMurtrie, P. Nyström & M. J. Winterbourn, 2005. Top–down and bottom–up influences on populations of a stream detritivore. Freshwater Biology 50: 1206–1218.CrossRefGoogle Scholar
  51. McMahon, R. F., 1975. Growth, reproduction, and bioenergetic variation in three natural populations of a freshwater limpet Laevapex fuscus (C. B. Adams). Proceedings of the Malacological Society, London 41: 331–352.Google Scholar
  52. Meissner, K. & T. Muotka, 2006. The role of trout in stream food webs: integrating evidence from field surveys and experiments. Journal of Animal Ecology 75: 421–433.PubMedCrossRefGoogle Scholar
  53. Merritt, R. W., K. W. Cummins & M. B. Berg, 2008. An Introduction to the Aquatic Insects of North America, 4th ed. Kendall Hunt Publishing Company, Dubuque.Google Scholar
  54. Meyer, E., 1989. Relationship between body length parameters and dry mass in running water invertebrates. Archiv für Hydrobiologie 117: 191–203.Google Scholar
  55. Miller, A. M. & S. W. Golladay, 1996. Effects of spates and drying on macroinvertebrate assemblages of an intermittent and a perennial prairie stream. Journal of the North American Benthological Society 15: 670–689.CrossRefGoogle Scholar
  56. Miltner, R. J. & E. T. Rankin, 1998. Primary nutrients and the biotic integrity of rivers and streams. Freshwater Biology 40: 145–158.CrossRefGoogle Scholar
  57. Moore, C. R., 1987. Determination of benthic-invertebrate indices and water-quality trends of selected streams in Chester County, Pennsylvania, 1969–1980. US Geological Survey, Water-Resources Investigations Report 85-4177: 67.Google Scholar
  58. Mosisch, T. D., S. E. Bunn & P. M. Davies, 2001. The relative importance of shading and nutrients on algal production in subtropical streams. Freshwater Biology 46: 1269–1278.CrossRefGoogle Scholar
  59. Opsahl, R. W., T. Wellnitz & N. L. Poff, 2003. Current velocity and invertebrate grazing regulate stream algae: results of an in situ electrical exclusion. Hydrobiologia 499: 135–145.CrossRefGoogle Scholar
  60. O’Reilly, J. E. & D. D. Dow, 2006. Phytoplankton and primary productivity. In Link, J. S., C. A. Griswold, E. T. Methratta & J. Gunnard (eds), Documentation for the Energy Modeling and Analysis eXercise (EMAX). US Department of Commerce, Northeast Fisheries Science Center Reference Document 06-15: 8–14.Google Scholar
  61. Paine, R. T., 1966. Food web complexity and species diversity. The American Naturalist 100: 65–75.CrossRefGoogle Scholar
  62. Peckarsky, B. L., P. R. Fraissinet, M. A. Penton & D. J. Conklin Jr, 1990. Freshwater Macroinvertebrates of Northeastern North America. Cornell University Press, Ithaca.Google Scholar
  63. Perrin, C. J. & J. S. Richardson, 1997. N and P limitation of benthos abundance in the Nechako River, British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 54: 2574–2583.Google Scholar
  64. Peterson, B. J., L. Deegan, J. Helfrich, J. E. Hobbie, M. Hullar, B. Moller, T. E. Ford, A. Hershey, A. Hiltner, G. Kipphut, M. A. Lock, D. M. Fiebig, V. McKinley, M. C. Miller, J. R. Vestal, R. Ventullo & G. Volk, 1993. Biological responses of a tundra river to fertilization. Ecology 74: 653–672.CrossRefGoogle Scholar
  65. Polis, G. A., 1999. Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos 86: 3–15.CrossRefGoogle Scholar
  66. Polis, G. A. & D. R. Strong,  1996.  Food web complexity and community dynamics.  American Naturist 147: 813–846.Google Scholar
  67. Post, D. M., 2002. The long and short of food-chain length. Trends in Ecology and Evolution 17: 269–277.CrossRefGoogle Scholar
  68. Power, M. E., 1992. Top–down and bottom–up forces in food webs: do plants have primacy? Ecology 73: 733–746.CrossRefGoogle Scholar
  69. Pringle, C. M., 1990. Nutrient spatial heterogeneity: effects on community structure, physiognomy, and diversity of stream algae. Ecology 71: 905–920.CrossRefGoogle Scholar
  70. Ramírez, A. & C. M. Pringle, 2006. Fast growth and turnover of chironomid assemblages in response to stream phosphorus levels in a tropical lowland landscape. Limnology and Oceanography 51: 189–196.CrossRefGoogle Scholar
  71. Ramsay, P. M., S. D. Rundle, M. J. Attrill, M. G. Uttley, P. R. Williams, P. S. Elsmere & A. Abada, 1997. A rapid method for estimating biomass size spectra of benthic metazoan communities. Canadian Journal of Fisheries and Aquatic Sciences 54: 1716–1724.Google Scholar
  72. Rodgers Jr, J. H., K. L. Dickson & J. Cairns Jr, 1979. A review and analysis of some methods used to measure functional aspects of periphyton. In Weitzel, R. L. (ed.), Methods and Measurements of Periphyton Communities: A Review-STP 690. American Society for Testing and Materials, Baltimore, MD: 142–167.CrossRefGoogle Scholar
  73. Rosemond, A. D., P. J. Mulholland & J. W. Elwood, 1993. Top–down and bottom–up control of stream periphyton: effects of nutrients and herbivores. Ecology 74: 1264–1280.CrossRefGoogle Scholar
  74. Ruetz, C. R., A. L. Hurford & B. Vondracek, 2003. Interspecific interactions between brown trout and slimy sculpin in stream enclosures. Transactions of the American Fisheries Society 132: 611–618.CrossRefGoogle Scholar
  75. Sabo, J. L., J. L. Bastow & M. E. Power, 2002. Length–mass relationships for adult aquatic and terrestrial invertebrates in a California watershed. Journal of the North American Benthological Society 21: 336–343.CrossRefGoogle Scholar
  76. Sandin, S. A., J. E. Smith, E. E. DeMartini, E. A. Dinsdale, S. D. Donner, A. M. Friedlander, T. Konotchick, M. Malay, J. E. Maragos, D. Obura, O. Pantos, G. Paulay, M. Richie, F. Rohwer, R. E. Schroeder, S. Walsh, J. B. C. Jackson, N. Knowlton & E. Sala, 2008. Baselines and degradation of coral reefs in the Northern Line Islands. PLoS One 3: e1548.PubMedCrossRefGoogle Scholar
  77. Simpson, K. W. & R. W. Bode, 1980. Common Larvae of Chironomidae (Diptera) from New York State Streams and Rivers with particular reference to the fauna of artificial substrates. Bulletin No. 439, New York State Museum. New York State Education Department.Google Scholar
  78. Small, G. E., A. M. Helton & C. Kazanci, 2009. Can consumer stoichiometric regulation control nutrient spiraling in streams? Journal of the North American Benthological Society 28: 747–765.CrossRefGoogle Scholar
  79. Smith, V. H., G. D. Tilman & J. C. Nekola, 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100: 179–196.PubMedCrossRefGoogle Scholar
  80. Stoffels, R. J., S. Karbe & R. A. Paterson, 2003. Length-mass models for some common New Zealand littoral-benthic macroinvertebrates, with a note on within-taxon variability in parameter values among published models. New Zealand Journal of Marine and Freshwater Research 37: 449–460.CrossRefGoogle Scholar
  81. Tanabe, K. & T. Namba, 2005. Omnivory creates chaos in simple food web models. Ecology 86: 3411–3414.CrossRefGoogle Scholar
  82. Thompson, R. M., M. Hemberg, B. M. Starzomski & J. B. Shurin, 2007. Trophic levels and trophic tangles: the prevalence of omnivory in real food webs. Ecology 88: 612–617.PubMedCrossRefGoogle Scholar
  83. Tilman, D., 1982. Resource Competition and Community Structure. Princeton University Press, Princeton, NJ.Google Scholar
  84. Waide, R. B., M. R. Willig, C. F. Steiner, G. Mittelbach, L. Gough, S. I. Dodson, G. P. Juday & R. Parmenter, 1999. The relationship between productivity and species richness. Annual Review of Ecology and Systematics 30: 257–300.CrossRefGoogle Scholar
  85. Wallace, J. B. & J. R. Webster, 1996. The role of macroinvertebrates in stream ecosystem function. Annual Reviews in Entomology 41: 115–139.CrossRefGoogle Scholar
  86. Wang, L., D. M. Robertzon & P. J. Garrison, 2007. Linkages between nutrients and assemblages of macroinvertebrates and fish in wadeable streams: implication to nutrient criteria development. Environmental Management 39: 194–212.PubMedCrossRefGoogle Scholar
  87. Winterbourn, M. J., 1990. Interactions among nutrients, algae and invertebrates in a New Zealand mountain stream. Freshwater Biology 23: 463–474.CrossRefGoogle Scholar
  88. Wissinger, S. & J. McGrady, 1993. Intraguild predation and competition between larval dragonflies: direct and indirect effects on shared prey. Ecology 74: 207–218.CrossRefGoogle Scholar
  89. Wootton, J. T. & M. E. Power, 1993. Productivity, consumers, and the structure of a river food chain. Proceedings of the National Academy of Sciences of the United States of America 90: 1384–1387.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Ecosystem Science and ManagementThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Biology & Institute for Great Lakes ResearchCentral Michigan UniversityMount PleasantUSA

Personalised recommendations