, Volume 739, Issue 1, pp 7–24 | Cite as

Evolution in isolation: the Gyraulus species flock from Miocene Lake Steinheim revisited



The Miocene Steinheim Basin in SW Germany is an ancient (long-lived) palaeo-lake that has existed over some hundreds of thousands of years. It is an iconic fossil site, because the historically oldest phylogenetic tree of extinct organisms was based on specimens described from this locality. Today the basin contains 30–40 m thickness of lake sediments with planorbid snails of the genus Gyraulus occurring in rock-forming quantities. The shells are morphologically highly disparate with forms ranging from the tiny, planispiral founder species Gyraulus kleini, to fragile corkscrew-like uncoiled forms and to large trochiform morphs with thick shells. In total, this presumably monophyletic species flock contains 17 species distributed in time and space, all of which are endemic, except for the founder species. Up to nine of them occur in a single sedimentary level and are inferred to have lived together. Such an extreme rate of endemism makes fossil Lake Steinheim special among extant and fossil lakes. This review article summarises and discusses the species concept(s), indications for endemism, speciation processes, the phylogenetic concept(s) and factors controlling evolution. It also provides directions for future research.


Intralacustrine speciation Gyraulus Planorbidae Endemic evolution Ancient lake 



The author wishes to thank J. Rust (Bonn) and R. Schoch (Stuttgart) for critical discussions about the Steinheim snails and K. Wolf-Schwenninger (Stuttgart) for SEM-photography. The comments of two anonymous reviewers have remarkable increased the quality of this paper and the author wishes to thank them for their efforts.


  1. Adam, K. D., 1980. Das Steinheimer Becken – eine Fundstätte von Weltgeltung. Jahreshefte der Gesellschaft für Naturkunde Württembergs 135: 32–144.Google Scholar
  2. Albrecht, C. & T. Wilke, 2008. Ancient Lake Ohrid: biodiversity and evolution. Hydrobiologia 615: 103–140.CrossRefGoogle Scholar
  3. Albrecht, C., T. Hauffe, K. Schreiber, S. Trajanovski & T. Wilke, 2009. Mollusc biodiversity and endemism in the Potential Ancient Lake Trichonis, Greece. Malacologia 51: 357–375.CrossRefGoogle Scholar
  4. Bahrig, B., H. Mensink & W. Mergelsberg, 1986. Das Steinheimer Becken (Süddeutschland): Erläuterungen zu einer geologischen Karte 1: 10000. Bochumer geologische und geotechnische Arbeiten.Google Scholar
  5. Bajor, M., 1965. Zur Geochemie der tertiären Süßwasserablagerungen des Steinheimer Beckens, Steinheim am Albuch (Württemberg). Jahreshefte des Geologischen Landesamt Baden-Württemberg 7: 355–386.Google Scholar
  6. Bolten, R. H., 1977. Die karbonatischen Ablagerungen des obermiozänen Kratersees im Nördlinger Ries. Unpublished Doctoral Thesis, University of München.Google Scholar
  7. Darwin, C., 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London.Google Scholar
  8. Dollo, L., 1893. Les lois de l’évolution. Bulletin de la Societe Belge de Geologie de Paleontologie & d’Hydrologie 7: 164–166.Google Scholar
  9. Eldredge, N. & S. J. Gould, 1972. Punctuated equilibria: an alternative to phyletic gradualism. In Schopf, T. J. M. (ed.), Models in Paleobiology. Freeman, Cooper & Co., San Francisco.Google Scholar
  10. Finger, I., 1998. Gastropoden der kleini-Schichten des Steinheimer Beckens (Miozän, Süddeutschland). Stuttgarter Beiträge zur Naturkunde B 259: 1–51.Google Scholar
  11. Glaubrecht, M., 2012. Franz Hilgendorf’s dissertation Beiträge zur Kenntnis des Süßwasserkalks von Steinheim from 1863: transcription and description of the first Darwinian interpretation of transmutation. Zoosystematics and Evolution 88: 231–259.CrossRefGoogle Scholar
  12. Gorthner, A., 1984. Die Bedeutung der Steinnheimer Schnecken für die Evolutionstheorie. Mitteilungen der deutschen malakologischen Gesellschaft 37: 56–64.Google Scholar
  13. Gorthner, A., 1992. Bau, Funktion und Evolution komplexer Gastropodenschalen in Langzeit-Seen. Stuttgarter Beiträge zur Naturkunde B 190: 1–173.Google Scholar
  14. Gorthner, A. & C. Meier-Brook, 1985. The Steinheim Basin as a paleo-ancient lake. Lecture Notes in Earth Sciences 1: 322–334.CrossRefGoogle Scholar
  15. Gottschick, F., 1920. Die Umbildung der Süßwasserschnecken des Tertiärbeckens von Steinheim a. A. unter dem Einflusse heißer Quellen. Jenaische Zeitschrift für Naturwissenschaft 56: 155–216.Google Scholar
  16. Gottschick, F. & W. Wenz, 1919–1922. Die Land- und Süßwassermollusken des Tertiärbeckens von Steinheim am Albuch. Nachrichtsblatt der deutschen malakozoologischen Gesellschaft 51: 1–23; 52: 120–127; 53: 33–47; 54: 06–109.Google Scholar
  17. Gould, S. J., 2002. The Structure of Evolutionary Theory. University Press, Harvard.Google Scholar
  18. Greenwood, P. H., 1984. What is a species flock? In Echelle, A. A. & I. Kornfiled (eds.), Evolution of Fish Species Flocks. Orono Press, Maine: 13–19.Google Scholar
  19. Harzhauser, M. & O. Mandic, 2008. Neogene lake systems of Central and South-Eastern Europe: Faunal diversity, gradients and interrelations. Palaeogeography, Palaeoclimatology, Palaeoecology 260: 417–434.CrossRefGoogle Scholar
  20. Heizmann, E. P. J. & W. Reiff, 2002. Der Steinheimer Meteorkrater. F. Pfeil, München.Google Scholar
  21. Hilgendorf, F., 1863. Beiträge zur Kenntnis des Süßwasserkalkes von Steinheim. Unpublished Dissertation, University of Tübingen.Google Scholar
  22. Hilgendorf, F., 1867. Über Planorbis multiformis im Steinheimer Süßwasserkalk. Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin 1866: 474–504.Google Scholar
  23. Hilgendorf, F., 1875. Briefliche Mitteilungen. Herr Hilgendorf an Herrn E. von Martens. Zeitschrift der Deutschen Geologischen Gesellschaft 27: 224–227.Google Scholar
  24. Hilgendorf, F., 1877. Die Streitfrage des Planorbis multiformis betreffend. Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin 1877: 268–269.Google Scholar
  25. Hilgendorf, F., 1879. Zur Streitfrage des Planorbis multiformis. Kosmos 5(10–22): 90–99.Google Scholar
  26. Hilgendorf, F., 1881. Die neu erschienene Schrift The genesis of the tertiary species of Planorbis at Steinheim von A. Hyatt. Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin 1881: 95–100.Google Scholar
  27. Hilgendorf, F., 1901. Der Uebergang des Planorbis multiformis trochifromis zum Planorbis multiformis oxystomus. Archiv für Naturgeschichte 67: 331–346.Google Scholar
  28. Hyatt, A., 1880. The Genesis of the Tertiary Species of Planorbis at Steinheim. Anniversary Memoirs Boston Society of natural History 1880: 1–114.Google Scholar
  29. Janz, H., 1992. Die miozänen Süßwasserostrakoden des Steinheimer Beckens (Schwäbische Alb, Süddeutschland). Stuttgarter Beiträge zur Naturkunde B 183: 1–117.Google Scholar
  30. Janz, H., 1999. Hilgendorf’s planorbid tree – the first introduction of Darwin’s Theory of Transmutation into palaeontology. Paleontological Research 3: 287–293.Google Scholar
  31. Janz, H., 2000. An example of intralacustrine evolution at an early stage: the freshwater ostracods of the Miocene crater lake of Steinheim (Germany). Hydrobiologia 419: 103–117.CrossRefGoogle Scholar
  32. Klähn, H., 1923. Paläontologische Methoden und ihre Anwendung auf die paläobiologischen Verhältnisse des Steinheimer Beckens. Borntraeger, Berlin.Google Scholar
  33. Lindenberg, H. G. & H. Mensink, 1979. Multivariate Gruppierungsmethoden in phylogenetisch orientierter Paläontologie (am Beispiel von Gastropoden aus dem Steinheimer Becken). Berliner geowissenschaftliche Abhandlungen A 15: 30–51.Google Scholar
  34. Meier-Brook, C., 1983. Taxonomic studies on Gyraulus (Gastropoda: Planorbidae). Malacologia 24: 1–113.Google Scholar
  35. Mensink, H., 1967. Zur Entwicklungsgeschichte der tertiären Planorben aus dem Steinheimer Becken in Süddeutschland. Unpublished Habilitation Thesis, University of Bochum.Google Scholar
  36. Mensink, H., 1984. Die Entwicklung der Gastropoden im miozänen See des Steinheimer Beckens (Süddeutschland). Palaeontographica A 183: 1–63.Google Scholar
  37. Neubauer, T. A., M. Harzhauser & A. Kroh, 2013a. Phenotypic evolution in a fossil gastropod species lineage: evidence for adaptive radiation? Palaeogeography, Palaeoclimatology, Palaeoecology 370: 117–126.CrossRefGoogle Scholar
  38. Neubauer, T. A., O. Mandic, M. Harzhauser & H. Hrvatovic, 2013b. A new Miocene lacustrine mollusc fauna of the Dinaride Lake System and its palaeobiogeographic, palaeoecologic and taxonomic implications. Palaeontology 56: 129–156.CrossRefGoogle Scholar
  39. Nützel, A. & K. Bandel, 1993. Studies on the side-branch planorbids (Mollusca, Gastropoda) of the Miocene crater lake of Steinheim am Albuch (southern Germany). Scripta Geologica, Special Issue 2: 313–357.Google Scholar
  40. Piller, W. E., M. Harzhauser & O. Mandic, 2007. Miocene Central Paratethys stratigraphy – current status and future directions. Stratigraphy 4: 151–168.Google Scholar
  41. Povel, G. D. E., 1993. The main branch of Miocene Gyraulus (Gastropoda; Planorbidae) of Steinheim (southern Germany): a reconsideration of Mensink’s data set. Scripta Geologica, Special Issue 2: 371–386.Google Scholar
  42. Rasser, M. W., 2006. 140 Jahre Steinheimer Schnecken-Stammbaum: der älteste fossile Stammbaum aus heutiger Sicht. Geologica et Palaeontologica 40: 195–199.Google Scholar
  43. Rasser, M. W., 2013. Darwin’s dilemma: the Steinheim snails’ point of view. Zoosystematics and Evolution 89: 13–20.CrossRefGoogle Scholar
  44. Reif, W.-E., 1983a. Hilgendorfs (1863) dissertation on the Steinheim planorbids (Gastropoda; Miocene): The development of a phylogenetic research program for Paleontology. Paläontologische Zeitschrift 57: 7–20.CrossRefGoogle Scholar
  45. Reif, W.-E., 1983b. The Steinheim snails (Miocene; Schwäbische Alb) from a Neo-Darwinian point of view: a discussion. Paläontologische Zeitschrift 57: 21–26.CrossRefGoogle Scholar
  46. Reif, W.-E., 1985. Endemic evolution of Gyraulus kleini in the steinheim basin (planorbid snails, miocene, southern Germany). Sedimentary and Evolutionary Cycles. Springer, Berlin.Google Scholar
  47. Riedel, F., 1993. Early ontogenetic shell formation in some freshwater gastropods and taxonomic implications of the protoconch. Limnologica 23: 349–368.Google Scholar
  48. Rocholl, A., M. Ovtcharova, U. Schaltegger, J. Wijbrans, J. Pohl, M. Harzhauser, J. Prieto, A. Ulbig & M. Boehme, 2011. A precise and accurate astronomical age of the Ries impact crater, Germany: a cautious note on argon dating of impact material. Geophysical Research Abstracts 13. http://meetingorganizer.copernicus.org/EGU2011/EGU2011-13322-7.pdf.
  49. Sandberger, C. L. F., 1870–1875. Die Land- und Süsswasser-Conchylien der Vorwelt. C. W. Kreidel’s Verlag, Wiesbaden.Google Scholar
  50. Schön, I. & K. Martens, 2004. Adaptive, pre-adaptive and non-adaptive components of radiations in ancient lakes: a review. Organisms Diversity and Evolution 4: 137–156.CrossRefGoogle Scholar
  51. Tütken, T., T. W. Vennemann, H. Janz & E. P. J. Heizmann, 2006. Palaeoenvironment and palaeoclimate of the Middle Miocene lake in the Steinheim basin, SW Germany: a reconstruction from C, O, and Sr isotopes of fossil remains. Palaeogeography, Palaeoclimatology, Palaeoecology 241: 457–491.CrossRefGoogle Scholar
  52. von Klein, A., 1847. Conchylien der Süßwasserkalkformationen Württembergs. Jahreshefte des Vereins für Vaterländische Naturkunde in Württemberg 2: 60–116.Google Scholar
  53. Wagner, M., 1873. The Darwinian Theory and the Law of the Migration of Organisms. E. Stanford, London.Google Scholar
  54. Weismann, A., 1872. Ueber den Einfluss der Isolirung auf die Artbildung. Engelmann, Leipizig.CrossRefGoogle Scholar
  55. Wenz, W., 1922. Die Entwicklungsgeschichte der Steinheimer Planorben und ihre Bedeutung für die Deszendenzlehre. Natur und Museum 52: 135–158.Google Scholar
  56. Wenz, W., 1923. Gastropoda extramarina tertiara I: literatur. Fossilium Catalogus Animalia 17: 9–206.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Staatliches Museum für Naturkunde StuttgartStuttgartGermany

Personalised recommendations