Advertisement

Hydrobiologia

, Volume 721, Issue 1, pp 223–238 | Cite as

Phytoplankton community response to hydrological variations in oxbow lakes with different levels of connection to a tropical river

  • D. C. Granado
  • R. Henry
Primary Research Paper

Abstract

Changes to the structure of the phytoplankton community and to the physical and chemical variables of the water were investigated in oxbow lakes with different levels of connection to a tropical river and subject to annual hydrological pulse variations. The selected lentic environments are located at the mouth region of the main tributary in a reservoir built for water storage and electric power generation. The temporal variation of phytoplankton in the studied lentic environments can be attributed mainly to the hydrological level of the river. A similar variation pattern of the ecological attributes was observed in the structure of the phytoplankton community in the connected lakes and Paranapanema River, evidencing the high degree of association that the lacustrine systems maintain with the river. The highest values of richness and diversity for connected environments were observed at the end of the emptying period and in the drought. However, considering the isolated lake, the highest values of these attributes were recorded during the flooding period.

Keywords

Temporal variation Hydrological pulse Oxbow lakes Phytoplankton 

Notes

Acknowledgments

The authors are grateful to FAPESP—São Paulo Research Foundation (Proc. 03/12473-9)—for the scholarship granted to D.C. Granado, to Hamilton A. Rodrigues and Lúcio Miguel de Oliveira for helping with fieldwork, to the two anonymous reviewers for comments and suggestions, to Dr. Antonio C. S. Pião for statistical analysis (ANOVA and Tukey test), and to Laerte José da Silva, from the American Translators Association, for the English language revision.

References

  1. American Public Health Association, 1995. Standart Methods for the Examination of Water and Wastewater, 19th ed. Byrd Prepess Spingfield, Washington, DC.Google Scholar
  2. Amoros, C. & G. Bornette, 2002. Connectivity and biocomplexity in water bodies of riverine floodplains. Freshwater Biology 47: 761–776.CrossRefGoogle Scholar
  3. Butler, J., R. Croome & G. N. Rees, 2007. The composition and importance of the phytoneuston in two floodplain lakes in south-eastern Australia. Hydrobiologia 579: 135–145.CrossRefGoogle Scholar
  4. Carmo, C. F., 2007. Influência do aqüífero freático na dinâmica de nutrientes (nitrogênio e fósforo) em lagoas com diferentes características hidrodinâmicas. PhD Thesis. Escola de Engenharia de São Carlos, Universidade de São Paulo: 257 pp.Google Scholar
  5. Casanova, S. M. C. & R. Henry, 2004. Longitudinal distribution of Copepoda populations in the transition zone of Paranapanema River and Jurumirim Reservoir (São Paulo) and interchange with two lateral lakes. Brazilian Journal of Biology 64: 11–26.CrossRefGoogle Scholar
  6. Descy, J. P., 1993. Ecology of the phytoplankton of the river Moselle: effects of disturbances on community structure and diversity. Hydrobiologia 249: 111–116.CrossRefGoogle Scholar
  7. Domitrovic, Y. Z., 2003. Effect of fluctuation in water level of phytoplankton development in three lakes of the Paraná River floodplain (Argentina). Hydrobiologia 510: 175–193.CrossRefGoogle Scholar
  8. Garcia de Emiliani, M. O., 1993. Seasonal succession of phytoplankton in a lake of the Paraná River floodplain, Argentina. Hydrobiologia 264: 101–114.CrossRefGoogle Scholar
  9. Garcia de Emiliani, M. O., 1997. Effects of water level fluctuations on phytoplankton in a river–floodplain lake system (Paraná River, Argentina). Hydrobiologia 357: 1–15.CrossRefGoogle Scholar
  10. Golterman, H. L., R. S. Clymo & M. A. M. Ohnstad, 1978. Methods for Physical and Chemical Analysis of Freshwater, 2nd ed. Blackwell Scientific, Oxford: 214 pp.Google Scholar
  11. Granado, D. C. & R. Henry, 2008. The influence of the hydrologic pulse on the water physical and a chemical variables of lateral lakes with different connection levels to Paranapanema River in the mouth zone at Jurumirim Reservoir. Acta Limnologica Brasiliensia 20: 265–275.Google Scholar
  12. Granado, D. C. & R. Henry, 2012. Changes on water quality of Paranapanema River and three lateral lakes in its mouth zone into Jurumirim Reservoir (São Paulo, Brazil). Latin America Journal of Aquatic Research 40: 79–89.CrossRefGoogle Scholar
  13. Granado, D. C., R. Henry & A. Tucci, 2009. Influência da variação hidrométrica na comunidade fitoplanctônica do rio Paranapanema e de uma lagoa marginal na zona de desembocadura na represa de Jurumirim (SP). Hoehnea 36: 113–129.CrossRefGoogle Scholar
  14. Hamilton, S. K., O. C. Souza & M. E. Coutinho, 1998. Dynamics of floodplain inundation in the alluvial fan of the Taquari River (Pantanal, Brazil). Verhandlung Internationale Vereinging Limnologie 26: 912–926.Google Scholar
  15. Happey-Wood, C. M., 1988. Ecology of freshwater planktonic green algae. In Sangren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 175–226.Google Scholar
  16. Henry, R. (ed.), 2003. Ecótonos nas interfaces dos ecossistemas aquáticos. Rima, São Carlos: 349 pp.Google Scholar
  17. Henry, R., 2005. The connectivity of the Paranapanema River with two lateral lakes in its mouth zone into the Jurumirim Reservoir. Acta Limnologica Brasiliensia 17: 57–69.Google Scholar
  18. Henry, R. & F. E. Maricato, 1996. Sedimentation rates of tripton in Jurumirim Reservoir (São Paulo, Brazil). Limnologica 26: 15–25.Google Scholar
  19. Henry, R. & M. G. Nogueira, 1999. A represa de Jurumirim (São Paulo): Primeira síntese sobre o conhecimento limnológico. In Henry, R. (ed.). Ecologia de Reservatórios: Estrutura, função e aspectos sociais. FUNDIBIO-FAPESP, Botucatu: 651–686.Google Scholar
  20. Henry, R., E. A. Panarelli, S. M. C. Casanova, M. R. Suiberto & A. A. O. Afonso, 2006a. Interações hidrológicas entre lagoas marginais e o rio Paranapanema na zona de sua desembocadura na Represa de Jurumirim. In Nogueira, M. G., A. Jorcin & R. Henry (eds), Ecologia de reservatórios: impactos potenciais, ações de manejo e sistemas em cascata, 2a ed. Rima, São Carlos: 57–82.Google Scholar
  21. Henry, R., E. Ushinohama & R. M. R. Ferreira, 2006b. Fitoplâncton em três lagoas marginais ao Rio Paranapanema em sua desembocadura no Reservatório de Jurumirim (São Paulo, Brasil) durante um período prolongado de seca. Revista Brasileira de Botânica 29: 399–414.CrossRefGoogle Scholar
  22. Henry, R., E. A. Panarelli, S. M. C. Casanova, D. C. Granado, R. M. Mortari & J. Abra, 2011. Plankton richness and abundance in several different hydrological situations in lakes lateral to a river: a case study in mouth zone of a tributary into a tropical river. Oecologia Australis 15: 537–558.CrossRefGoogle Scholar
  23. Hillebrand, H., C. D. Dürselen, D. Kirschiel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  24. Huszar, V. L. M. & C. S. Reynolds, 1997. Phytoplancton periodicity and sequences of dominance in a Amazonian floodplain lake (Lago Batata, Pará, Brazil): responses to gradual environmental change. Hydrobiologia 346: 169–181.CrossRefGoogle Scholar
  25. Ibañez, M. S. R., 1998. Phytoplankton composition and abundance of a central Amazonian floodplain lake. Hydrobiologia 362: 79–83.CrossRefGoogle Scholar
  26. Isaksson, A., 1998. Phagotrophic phytopflagellates in lakes: a literature review. Archives of Hydrobiology, Special Issues on Advanced Limnology 51: 63–90.Google Scholar
  27. Junk, W. J., 1980. Áreas inundáveis – Um desafio para a Limnologia. Acta Amazônica 10: 775–795.Google Scholar
  28. Junk, W. J., 1997. The Central Amazon Floodplain: Ecology of a Pulsing System. Springer Verlag, Berlin: 525 pp.Google Scholar
  29. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river floodplain systems. Canadian Special Publication of the Fisheries and Aquatic Sciences 106: 110–127.Google Scholar
  30. Klaveness, D., 1988. Ecology of the Cryptomonadida: a first review. In Sangren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 105–133.Google Scholar
  31. Krusche, A. V. & A. A. Mozeto, 1999. Seasonal variation in water quality of an oxbow lake in response to multiple short-time pulse of flooding (Jataí Ecological Station, Mogi-Guaçu River, Luiz Antonio, SP, Brazil). Anais da Academia Brasileira de Ciências 71: 777–790.PubMedGoogle Scholar
  32. Loverde-Oliveira, S. M. & V. L. M. Huszar, 2007. Phytoplankton ecological responses to the flood pulse in a Pantanal lake, Central Brazil. Acta Limnologica Brasiliensia 19: 117–130.Google Scholar
  33. Mackeret, F. I. H., J. Heron & J. F. Talling, 1978. Water Analysis: Some Revised Methods for Limnologists. Freshwater Biological Association, London: 121 pp.Google Scholar
  34. McCune, B. & J. J. Mefford, 1997. PC-ord. Multivariate analysis of ecological data, version 3.0. Oregon MjM Software Design: 47 pp.Google Scholar
  35. Melo, S. & V. L. Huszar, 2000. Phytoplankton in an Amazonian flood-plain lake (Lagoa Batata, Brasil): diel variation and species strategies. Journal of Plankton Research 22: 63–76.CrossRefGoogle Scholar
  36. Mihaljevíc, M., F. Stevic, J. Horvatic & B. H. Kutuzovic, 2009. Dual impact of the flood pulses on the phytoplankton in a Danubian floodplain lake (Kopacki Rit nature Park, Croatia). Hydrobiologia 618: 77–88.CrossRefGoogle Scholar
  37. Moschini-Carlos, V., M. L. M. Pompêo & R. Henry, 1998. Caracterização limnológica de uma baía marginal do Rio Paranapanema (zona de desembocadura da Represa de Jurumirim, SP). Acta Limnologica Brasiliensia 10: 1–19.Google Scholar
  38. Neiff, J. J., 2001. Diversity in some tropical wetland systems of South America. In Gopal, B., W. J. Junk & J. A. Davis (eds), Biodiversity in Wetlands: Assessment, Function and Conservation, Vol. 2. Backhuys Publishers, Leiden: 157–186.Google Scholar
  39. Neiff, J. J., 2003. Planícies de inundação são ecótonos? In Henry, R. (ed.), 2003. Ecótonos nas interfaces dos ecossistemas aquáticos, Rima, São Carlos: 29–45.Google Scholar
  40. Nabout, J. C., I. S. Nogueira & L. G. Oliveira, 2006. Phytoplankton community of floodplain lakes of the Araguaia River, Brazil, in the rain and dry seasons. Journal of Plankton Research 28: 181–193.CrossRefGoogle Scholar
  41. Oliveira, M. D. & D. F. Calheiros, 2000. Flood pulse influence on phytoplankton communities of the south Pantanal floodplain, Brazil. Hydrobiologia 427: 101–112.CrossRefGoogle Scholar
  42. Paidere, J., D. Gruberts & A. Skute, 2007. Impact of two different flood pulses on planktonic communities of the largest floodplain lakes of the Daugava River (Latvia). Hydrobiologia 592: 303–314.CrossRefGoogle Scholar
  43. Panarelli, E. A., S. M. C. Casanova & R. Henry, 2008. The role of resting eggs in the recovery of zooplankton community in a marginal lake of the Paranapanema River (São Paulo, Brazil), after a long drought period. Acta Limnologica Brasiliensia 20: 73–88.Google Scholar
  44. Pithart, D., R. Pichlová, M. Bílý, J. Hrbáček, K. Novotná & L. Pechar, 2007. Spatial and temporal diversity of small shallow waters in river Lužnice floodplain. Hydrobiologia 584: 265–275.Google Scholar
  45. Pompêo, M. L. M., R. Henry & V. Moschini-Carlos, 1999. Ecologia de Echinochloa polystachya do Rio Paranapanema – SP, Brasil. In Henry, R. (ed.), Ecologia de reservatórios: estrutura, função e aspectos sociais. FAPESP/FUNDIBIO, Botucatu: 737–767.Google Scholar
  46. Putz, R. & W. J. Junk, 1997. Phytoplankton and periphyton. In Junk, W. J. (ed.), The Central Amazon Floodplain: Ecology of a Pulsing System. Springer Verlag, Berlim: 525 pp.Google Scholar
  47. Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 384 pp.Google Scholar
  48. Reynolds, C. S., V. L. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  49. Rodrigues, L. C., S. Train, M. C. Roberto & T. A. Pagioro, 2002. Seasonal fluctuation of some limnological variables on a floodplain lake (Patos lagoon) of the Upper Paraná River, Mato Grosso do Sul State, Brazil. Brazilian Archives of Biology and Technology 45: 499–513.CrossRefGoogle Scholar
  50. Shannon, C. E. & W. Weaver, 1963. A Mathematical Theory of Communication. University of Ilinois Press, Urbana: 117 pp.Google Scholar
  51. Shepherd, G. J., 1996. Fitopac 1: manual de usuário. Departamento de Botânica. Unicamp, Campinas: 95 pp.Google Scholar
  52. Sommer, U., J. Padisák, C. S. Reynolds & P. Juhász-Nagy, 1993. Hutchinson’s heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1–7.CrossRefGoogle Scholar
  53. Taniguchi, G. M., D. C. Bicudo & P. A. C. Senna, 2004. Abiotic variables in littoral – limnetic of an oxbow lake of Mogi-Guaçu River Floodplain, Southeastern, Brazil. Brazilian Archives of Biology and Technology 47: 961–971.CrossRefGoogle Scholar
  54. Taniguchi, G. M., D. C. Bicudo & P. A. C. Senna, 2005. Gradiente litorâneo-limnético do fitoplâncton e ficoperifíton em uma lagoa da planície de inundação do Rio Mogi-Guaçu. Revista Brasileira de Botânica 28: 137–147.CrossRefGoogle Scholar
  55. Teixeira, C. & M. B. Kutner, 1962. Plankton studies in a mangrove environment. I – first assessment of standing stock and ecological factors. Boletim do Instituto Oceanográfico 12: 101–124.CrossRefGoogle Scholar
  56. Thomaz, S. M., M. C. Roberto & L. M. Bini, 1997. Caracterização limnológica dos ambientes aquáticos e influência dos níveis fluviométricos. In Vazzoler, A. E. M., A. A. Agostinho & N. S. Hahn (eds), A planície de inundação do alto rio Paraná: aspectos físicos, biológicos e socioeconômicos. Eduem, Maringá: 73–102.Google Scholar
  57. Thomaz, S. M., l. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river–floodplain systems. Hydrobiologia 579: 1–13.CrossRefGoogle Scholar
  58. Townsend, S. A., 2006. Hydraulic phases, persistent stratification and phytoplankton in a tropical floodplain lake (Mary River, northern Australia). Hydrobiologia 556: 163–179.CrossRefGoogle Scholar
  59. Train, S. & L. C. Rodrigues, 1998. Temporal fluctuations of the phytoplankton community of the Baía River, in the upper Paraná River floodplain, Mato Grosso do Sul, Brazil. Hydrobiologia 361: 125–134.CrossRefGoogle Scholar
  60. Utermohl, H., 1958. Zur Vervollkommung der quantitativen Phytoplankton-Methodic. Verhandlung Internationale Vereinging Limnologie 9: 1–38.Google Scholar
  61. Valderrama, J. C., 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry 10: 109–122.CrossRefGoogle Scholar
  62. Ward, J. V., K. Tockner & F. Schiemer, 1999. Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regulated Rivers: Research and Management 15: 125–139.CrossRefGoogle Scholar
  63. Wetzel, R. G. & G. E. Likens, 1991. Limnological Analysis. 2nd ed. Springer Verlag, New York: 391 pp.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.University of Estadual Paulista (UNESP)RosanaBrazil
  2. 2.University of Estadual Paulista (UNESP)BotucatuBrazil

Personalised recommendations