, Volume 721, Issue 1, pp 57–66 | Cite as

Effect of habitat conditions on parasite infection in 0+ juvenile perch (Perca fluviatilis L.) in two Czech reservoirs

  • Kateřina Francová
  • Markéta Ondračková
Primary Research Paper


The objective of this study was to identify potential effects of habitat conditions on parasite infection risk in reservoirs. For this, we compared parasite infection in 0+ perch (Perca fluviatilis L.) between reservoir sections: (1) along the longitudinal profile of Brno reservoir (inflow—main body—outflow), and (2) the transversal profile of Hamry reservoir (littoral and pelagic zones). Perch were predominantly infected with trophically transmitted endoparasites. Longitudinal parasite infection differed between sampling sections, showing different trends in particular parasite species between sections. The abundance of dominant Bunodera luciopercae was highest in the main body and lowest in the outflow, abundance of Proteocephalus sp. and Camallanus spp. decreased between the inflow and outflow, and abundance of Acanthocephalus lucii and ectoparasites (Gyrodactylus sp. and Argulus foliaceus) increased from the inflow to the outflow. Parasite diversity was higher in the outflow compared to other sections. No difference was observed in parasite abundance between littoral and pelagic perch subpopulations, though higher endoparasite diversity was found in the littoral zone. The results indicate that habitat type can influence parasite infection in perch through local food (intermediate host) availability. Fish–host behaviour is also discussed as a factor possibly influencing infection in perch.


Parasite Intermediate host Food availability Habitat conditions Lentic Littoral 



This study was financially supported by the Grant Agency of the Czech Republic, No. P505/12/G112. We would like to thank the officials and managers of the Moravian Anglers’ Union (Brno) and the Elbe River Basin Authority (Hamry) for fish sampling permission; our colleagues from the Department of Fish Ecology at the Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, for assistance with field sampling, and our colleagues from the Parasitology Research Group of the Department of Botany and Zoology, Masaryk University, for help with parasitological dissection of the fish. We would also like to thank Kevin Roche for English correction.


  1. Adámek, Z., J. Musil & I. Sukop, 2004. Diet composition and selectivity in 0+ perch (Perca fluviatilis L.) and its competition with adult fish and carp (Cyprinus carpio L.) stock in pond culture. Agriculturae Conspectus Scientificus 69: 21–27.Google Scholar
  2. Bagge, A. M. & E. T. Valtonen, 1999. Development of monogenean communities on the gills of roach fry (Rutilus rutilus). Parasitology 118: 479–487.PubMedCrossRefGoogle Scholar
  3. Baruš, V. & O. Oliva, 1995. Fauna ČR a SR: Mihulovci (Petromyzontes) a ryby (Osteichthyes) (Fauna of the Czech Republic and the Slovak Republic: Petromyzontes and Osteichthyes). Academia, Prague (in Czech).Google Scholar
  4. Bauer, O. N., 1987. Opredeliteľ parazitov presnovodnych ryb fauny SSSR (A key for determination of parasites in freshwater fishes in USSR). Nauka, Leningrad (in Russian).Google Scholar
  5. Bush, A. O., K. D. Lafferty, J. M. Lotz & A. W. Shostak, 1997. Parasitology meets ecology on its own terms: Margolis et al. Revisited. Journal of Parasitology 83: 575–583.PubMedCrossRefGoogle Scholar
  6. Čech, M., M. Kratochvíl, J. Kubečka, V. Draštík & J. Matěna, 2005. Diel vertical migrations of bathypelagic perch fry. Journal of Fish Biology 66: 685–702.CrossRefGoogle Scholar
  7. Chubb, J. C., 1977. Seasonal occurrence of helminths in freshwater fishes, Part 1. Monogenea. Advances in Parasitology 15: 133–199.PubMedCrossRefGoogle Scholar
  8. Chubb, J. C., 1979. Seasonal occurrence of helminths in freshwater fishes, part 2. Trematoda. Advances in Parasitology 17: 142–313.CrossRefGoogle Scholar
  9. Closs, G., B. Downes & A. Boulton, 2004. Freshwater Ecology: A Scientific Introduction. Blackwell Publishing, Oxford.Google Scholar
  10. Copp, G. H., J. M. Olivier, M. Peňáz & A. L. Roux, 1991. Juvenile fishes as functional describers of fluvial ecosystems dynamics: applications on the River Rhône, France. Regulated Rivers: Research and Management 6: 135–145.CrossRefGoogle Scholar
  11. Dávidová, M., M. Ondračková, P. Jurajda & M. Gelnar, 2008. Parasite assemblages of European bitterling (Rhodeus amarus), composition and effects of habitat type and host body size. Parasitology Research 102: 1001–1011.PubMedCrossRefGoogle Scholar
  12. Ergens, R. & J. Lom, 1970. Původci parazitárních nemocí ryb (Causative agents of parasitic diseases in fishes). Academia, Prague (in Czech).Google Scholar
  13. Esch, G. W. & C. Fernández, 1993. A Functional Biology of Parasitism: Ecological and Evolutionary Implications. Chapman and Hall, London.Google Scholar
  14. Esch, G. W., A. O. Bush & J. M. Aho, 1990. Parasite Communities: Patterns and Processes. Chapman and Hall, London.Google Scholar
  15. Georgiev, B., V. Biserkov & T. Genov, 1986. In toto staining method for cestodes with iron acetocarmine. Helminthologia 23: 279–291.Google Scholar
  16. Gusev, A. V., 1985. Opredeliteľ parazitov presnovodnych ryb fauny SSSR. Parazitičeskije mnogokljetočnyje (A key for determination of parasites in freshwater fishes in USSR. Metazoan parasites). Nauka, Leningrad (in Russian).Google Scholar
  17. Hammer, R., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9.Google Scholar
  18. Hogue, C. & B. Swig, 2007. Habitat quality and endoparasitism in the Pacific sanddab Citharichthys sordidus from Santa Monica Bay, southern California. Journal of Fish Biology 70: 231–242.CrossRefGoogle Scholar
  19. Kratochvíl, M., J. Peterka, J. Kubečka, J. Matěna, M. Vašek, I. Vaníčková, M. Čech & J. Seďa, 2008. Diet of larvae and juvenile perch, Perca fluviatilis performing diel vertical migrations in a deep reservoir. Folia Zoologica 57: 313–323.Google Scholar
  20. Kuchta, R., M. Čech, T. Scholz, M. Soldánová, C. Levron & B. Škoríková, 2009. Endoparasites of European perch Perca fluviatilis fry: role of spatial segregation. Diseases of Aquatic Organisms 86: 87–91.PubMedGoogle Scholar
  21. Kuczyńska-Kippen, N. & K. Świdnicki, 2008. The spatial structure of zooplankton communities and trophic state of mid-city Strzeszyńskie lake. Teka, Commission of Protection and Formation of Natural Environment 5: 85–94.Google Scholar
  22. Lampert, W. & U. Sommer, 2007. Limnoecology: The Ecology of Lakes and Streams. Oxford University Press, Oxford.Google Scholar
  23. Marcogliese, D. J., 1995. The role of zooplankton in the transmission of helminth parasites to fish. Reviews in Fish Biology and Fisheries 5: 336–371.CrossRefGoogle Scholar
  24. Marcogliese, D. J., S. Campagna, E. Bergeron & J. D. McLaughlin, 2001. Population biology of eyeflukes in fish from a large fluvial ecosystem: the importance of gulls and habitat characteristics. Canadian Journal of Zoology 79: 1102–1113.CrossRefGoogle Scholar
  25. McCarthy, A. M., 1990. The influence of second intermediate host dispersion pattern upon the transmission of cercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology 101: 43–47.PubMedCrossRefGoogle Scholar
  26. Moravec, F., 1994. Parasitic nematodes of freshwater fishes of Europe. Academia, Prague.Google Scholar
  27. Niewiadomska, K., 2003. Pasożyty ryb Polski: klucze do oznaczania—Przywry (Digenea) (Parasites of fishes in Poland: a key for determination—Digenea). Polskie Towarzystwo Parazytologiczne, Warsaw (in Polish).Google Scholar
  28. Pasternak, A. F., K. Pulkkinen, V. N. Mikheev, T. Hasu & E. T. Valtonen, 1999. Factors affecting abundance of Triaenophorus infection in Cyclops strenuus, and parasite-induced changes in host fitness. International Journal for Parasitology 29: 1793–1801.PubMedCrossRefGoogle Scholar
  29. Schmidt, G. D., 1985. Development and life cycles. In Nickol B. B. & D. W. T. Crompton (eds), Biology of the Acanthocephala. Cambridge University Press, Cambridge.Google Scholar
  30. Scholz, T., 1989. Amphilinida and Cestoda. Parasites of Fish in Czechoslovakia. Academia, Prague.Google Scholar
  31. Scholz, T., 1999. Life cycles of species of Proteocephalus, parasites of fishes in the Palearctic region: a review. Journal of Helmintology 73: 1–19.Google Scholar
  32. Scholz, T., A. B. Rodney, R. Kuchta & R. Řepová, 2004. Larvae of gryporhynchid cestodes (Cyclophillidea) from fish: a review. Folia Parasitologica 51: 131–152.PubMedGoogle Scholar
  33. Šimková, A., S. Morand, I. Matějusová, P. Jurajda & M. Gelnar, 2001. Local and regional influences on patterns of parasite species richness of central European fishes. Biodiversity and Conservation 10: 511–525.CrossRefGoogle Scholar
  34. Smith, N. F., 2001. Spatial heterogeneity in recruitment of larval trematodes to snail intermediate hosts. Oecologia 127: 115–122.CrossRefGoogle Scholar
  35. Stiling, P. D., 1996. Ecology: Theories and Applications. Prentice Hall, New Jersey.Google Scholar
  36. Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera, 2006. Invertébrés d’Eau Douce. Systématique, Biologie, Écologie (Freshwater Invertebrates. Taxonomy, Biology, Ecology). CNRS Éditions, Paris (in French).Google Scholar
  37. Vašek, M., J. Kubečka, J. Matěna & J. Seďa, 2006. Distribution and diet of 0+ fish within a canyon-shaped European reservoir in late summer. International Review of Hydrobiology 91: 178–194.CrossRefGoogle Scholar
  38. Walseng, B., D. O. Hessen, G. Halvorsen & A. K. Schartau, 2006. Major contribution from littoral crustaceans to zooplankton species richness in lakes. Limnology and Oceanography 51: 2600–2606.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Institute of Vertebrate BiologyAcademy of Sciences of the Czech RepublicBrnoCzech Republic

Personalised recommendations