Skip to main content
Log in

Dynamics of grazing protozoa follow that of microalgae in natural biofilm communities

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study investigates the dynamics of protozoan community in biofilms formed on inert artificial surfaces suspended in various freshwater environments. The results also test the hypothesis that the dynamics of protozoan and microalgal communities in biofilms are interdependent because the latter form one of the major food items of benthic protozoa. Cleaned glass slides were suspended in surface waters at four sampling locations to collect biofilm communities. The glass slides after retrieval were observed under a microscope for diatom and protozoan density and their generic composition. Members of protozoa belonging to phylum Sarcomastigophora dominated the protozoan community followed by phylum Ciliophora in all sampling locations. The variation of protozoan feeding groups showed an initial abundance of autotrophs/holophytes which gave way to heterotrophs, predators, and bacterivores towards the end of the study. The density and generic composition of protozoa varied significantly with the age of biofilm and sampling location. The density variation of protozoa followed that of diatoms in all four sampling locations and this has resulted in a significant positive correlation between diatom and protozoan densities. This suggests the dependency and/or food web connectedness of these two communities in natural biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ackermann, B., M. Esser, A. Scherwass & H. Arndt, 2011. Long-term dynamics of microbial biofilm communities of the River Rhine with special references to ciliates. International Review of Hydrobiology 96: 1–19.

    Article  Google Scholar 

  • Bakke, R. & P. Q. Olsson, 1986. Biofilm thickness measurements by light microscopy. Journal of Microbiology Methods 5: 93–98.

    Article  Google Scholar 

  • Bohme, A., U. Risse-Buhl & K. Kusel, 2009. Protists with different feeding modes change biofilm morphology. FEMS Microbiology Ecology 69: 158–169.

    Article  PubMed  Google Scholar 

  • Bott, T. L. & M. A. Borchardt, 1999. Grazing of protozoan, bacteria and diatoms by meiofauna in lotic epibenthic communities. Journal of North American Benthic Society 18: 499–513.

    Article  Google Scholar 

  • Campbell, J. S. & H. R. McCrimmon, 1970. Biology of the emerald shiner Notropis antherinoides Rafinesque in Lake Simcoe. Canadian Journal of Fishery Biology 2: 259–273.

    Article  Google Scholar 

  • Caron, D. A., P. G. Davis, L. P. Madin & J. M. Sieburth, 1982. Heterotrophic bacteria and bacterivorous protozoa in oceanic macro aggregates. Science 218: 795.

    Article  PubMed  CAS  Google Scholar 

  • Caron, D. A., P. G. Davis, L. P. Madin & J. M. Sieburth, 1986. Enrichment of microbial populations in macroaggregates (marine snow) from surface waters of the North Atlantic. Journal of Marine Research 44: 543–565.

    Article  Google Scholar 

  • Carrick, H. J., G. L. Fahenstiel & W. D. Taylor, 1992. Growth and production of planktonic protozoa in Lake Michigan: in situ versus in vitro comparisons and importance of food web dynamics. Limnology Oceanography 37: 1221–1235.

    Article  Google Scholar 

  • Characklis, W. G., G. A. McFeters & K. C. Marshall, 1990. Physiological ecology in biofilm systems. In Characklis, W. G. & K. C. Marshall (eds), Biofilms. Wiley, New York.

    Google Scholar 

  • Costerton, J. W., K. J. Cheng, G. C. Geesey, T. I. Ladd, J. C. Nickel, M. Dasgupta & T. J. Marie, 1987. Bacterial biofilms in nature and disease. Annual Review of Microbiology 41: 435–464.

    Article  PubMed  CAS  Google Scholar 

  • Curds, C. R., A. Cockburn & J. M. Vandyke, 1968. An experimental study of the role of the ciliated protozoa in the activated sludge process. Water Pollution Control 67: 312–329.

    Google Scholar 

  • Dopheide, A., G. Lear, R. Stott & G. Lewis, 2009. Relative diversity and community structure of ciliates in stream biofilms according to molecular and microscopy methods. Applied and Environmental Microbiology 75: 5261–5272.

    Article  PubMed  CAS  Google Scholar 

  • Dopheide, A., G. Lear, R. Stott & G. Lewis, 2011. Preferential feeding by the ciliates Chilodonella and Tetrahymena spp. and effects of these protozoa on bacterial biofilm structure and composition. Applied Environmental Microbiology 77: 4564–4572.

    Article  PubMed  CAS  Google Scholar 

  • Eaton, A. D., L. S. Clesceri, E. W. Rice & A. E. Greenberg (eds), 2005. Standard Methods for the Examination of Water and Wastewater, Centennial edition. American Public Health Association, Washington, DC.

  • Epstein, S. S., 1997. Microbial food webs in marine sediments. I. Trophic interactions and grazing rates in two tidal flat communities. Microbial Ecology 34: 188–198.

    Article  PubMed  Google Scholar 

  • Fenchel, T., 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Marne Ecology Progress Series 9: 35–42.

    Article  Google Scholar 

  • Hastings, A., J. E. Byers, K. Cuddington, G. Clive, C. G. Jones, J. G. Labrinos, et al., 2007. Ecosystem engineering in space and time. Ecology Letters 10: 153–164.

    Article  PubMed  Google Scholar 

  • Hunt, A. P. & J. D. Parry, 1998. The effect of substratum roughness and river flow rate on the development of a freshwater biofilm community. Biofouling 12: 287–303.

    Article  Google Scholar 

  • Jonsson, P. R., 1986. Particle size selection, feeding rates and growth dynamics of marine planktonic oligotrichus ciliates (Ciliophora: Oligotrichina). Marine Ecology Progress Series 33: 265–277.

    Article  Google Scholar 

  • Kanavillil N., M. Thorn & S. Kurissery, 2012. Characterization of natural biofilms in temperate inland waters. Journal of Great Lakes Research. doi:10.1016/j.jglr.2012.06.014.

  • Kathol, M., H. Fischer & M. Weitere, 2011. Contribution of biofilm dwelling consumers to pelagic–benthic coupling in a large river. Freshwater Ecology 56: 1017–1030.

    Article  Google Scholar 

  • Khatoon, H., F. M. Yusoff, S. Banerjee, M. Shariff & S. Mohamed, 2007. Use of periphytic cyanobacterium and mixed diatoms coated substrate for improving water quality, survival and growth of Penaeus monodon Fabricius postlarvae. Aquaculture 27: 196–205.

    Article  Google Scholar 

  • Lake Simcoe Environmental Management Strategy (LSEMS), 2003. State of the Lake Simcoe Watershed 2003. Lake Simcoe Region Conservation Authority, New Market, ON.

  • Lamb, L. A. & R. L. Lowe, 1987. Effects of current velocity on the physical structuring of diatom (Bacillariophyceae) communities. Ohio Journal of Science 87: 72–78.

    Google Scholar 

  • Lee, J. J., S. H. Hunter & E. C. Bovee, 1985. An Illustrated Guide to the Protozoa. Society of Protozoologists, Lawrence: 615.

    Google Scholar 

  • Lee, J. J., G. F. Keedale & P. Bradbury, 2000. An Illustrated Guide to the Protozoa, Vols. I & II, 2nd ed. Society of Protozoologists, Lawrence: 1425 pp.

  • Lessard, E. J., M. P. Martin & D. J. S. Montagnes, 1996. A new method for live-staining protists with DAPI and its application as a tracer of ingestion by walleye Pollock (Theragra chalcogramma (Pallas) larvae. Journal of Experimental Marine Biology and Ecology 204: 43–57.

    Article  Google Scholar 

  • Lower Colorado River Authority (LCRA), 2011. Water quality indicators. Key measures provide a snapshot of conditions. http://www.lcra.org/water/quality/crwn/indicators.html.

  • MacLeod, F. A., S. R. Guiot & J. W. Costerton, 1990. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Applied Environmental Microbiology 56: 1598–1607.

    PubMed  CAS  Google Scholar 

  • Madoni, P., 1994. A sludge biotic index (SBI) for the evaluation of the biological performance of activated sludge plants based on the microfauna analysis. Water Research 28: 67–75.

    Article  CAS  Google Scholar 

  • Morin, S., S. Pesce, A. Tlili, M. Coste & B. Montuelle, 2010. Recovery potential of periphytic communities in a river impacted by vineyard watershed. Ecological Indicators 10: 419–426.

    Article  CAS  Google Scholar 

  • Paine, R. T., 1966. Food complexity and species diversity. The American Naturalist 100: 65–75.

    Article  Google Scholar 

  • Parry, J. D., 2004. Protozoan grazing of freshwater biofilms. Advances in Applied Microbiology 54: 167–196.

    Article  PubMed  Google Scholar 

  • Pederson, K., 1990. Biofilm development on stainless steel and pvc surfaces in drinking water. Water Research 24: 239–243.

    Article  Google Scholar 

  • Pratt, J. & J. Cairns Jr, 1985. Functional groups in the Protozoa: roles in differing ecosystems. Journal of Protozoology 32: 415–423.

    Article  Google Scholar 

  • Prescott, G. W., 1978. How to Know Freshwater Algae. W.C. Brown, Dubuque.

    Google Scholar 

  • Ricklefs, R. E., 2001. The Economy of Nature. W.H. Freeman and Company, New York.

    Google Scholar 

  • Risse-Buhl, U. & K. Kusel, 2009. Colonization dynamics of biofilm-associated ciliate morphotypes at different flow velocities. European Journal of Protistology 45: 64–76.

    Article  PubMed  Google Scholar 

  • Round, F. E., R. M. Crawford & D. G. Mann, 1990. Diatoms: Biology and Morphology of the Genera. Cambridge University Press, New York.

    Google Scholar 

  • Sekar, R., V. P. Venugoplalan, K. Nandakumar, K. V. K. Nair & V. N. R. Rao, 2004. Early stages of biofilm succession in a lentic freshwater environment. Hydrobiologia 512: 97–108.

    Article  Google Scholar 

  • Sherr, E. B., B. F. Sherr & J. McDaniel, 1991. Clearance rate of <6 μm fluorescence labeled algae (FLA) by estuarine protozoa: potential grazing impact of flagellates and ciliates. Marine Ecology Progress Series 69: 81–92.

    Article  Google Scholar 

  • Sieburth, J. M., 1984. Protozoan bacterirory in pelagic marine waters. In Hobbie, J. E. & P. J. L. Williams (eds), Heterotrophic Activity in the Sea. Plenum press, New York: 405–444.

    Chapter  Google Scholar 

  • Stewart, P. M., J. R. Pratt, J. Jr, R. L. Cairns & Lowe, 1985. Diatom and protozoan species accrual on artificial substrates in lentic habitats. Transaction of American Microbiology Society 104: 369–377.

    Article  Google Scholar 

  • Suttle, C. A., A. M. Chan, W. D. Taylor & P. J. Harrison, 1986. Grazing of planktonic diatoms by microflagellates. Journal of Plankton Research 8: 393–398.

    Article  Google Scholar 

  • Verity, P. G., 1985. Grazing, respiration, excretion and growth rates of tintinnids. Limnology and Oceanography 33: 245–255.

    Google Scholar 

  • Weerman, E. J., H. G. Van Der Geest, M. D. Van Der Meulen, E. M. M. Manders, J. Van de Koppel, P. M. J. Herman & W. Admiraal, 2011. Ciliates as engineers of phototrohic biofilms. Freshwater Biology 56: 1358–1369.

    Article  Google Scholar 

  • Weitere, M., K. Schmidt-Denter & H. Arndt, 2003. Laboratory experiments on the impact of biofilms on the plankton of a large river. Freshwater Biology 48: 1983–1992.

    Article  Google Scholar 

  • Wey, J. K., A. Scherwass, H. Norf, H. Arndt & M. Weitere, 2008. Effects of protozoan grazing within river biofilms under semi-natural conditions. Aquatic Microbial Ecology 52: 283–296.

    Article  Google Scholar 

  • Wey, J. K., K. Jurgens & M. Weitere, 2012. Seasonal and successional influences on bacterial community composition exceed that of protozoan grazing in river biofilms. Applied Environmental Microbiology 78: 2013–2024.

    Article  PubMed  CAS  Google Scholar 

  • Winter, J., M. C. Eimers, P. J. Dillon, L. D. Scott, W. A. Shceider & C. C. Willox, 2007. Phosphorus inputs to Lake Simcoe from 1990–2003: declines to tributary loads and observations on lake water quality. International Association of Great Lakes Research 33: 381–396.

    Article  CAS  Google Scholar 

  • Zhang, W., H. Xu, Y. Jiang, M. Zhu & K. A. S. Al-Rasheid, 2012. Colonization dynamics in trophic-functional structure of periphytic protest communities in coastal waters. Marine Biology 159: 735–748.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Lakehead University Research Development Fund. Undergraduate students Diane Mitchell and Katelyn Weel helped in data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandakumar Kanavillil.

Additional information

Handling editor: P. Nõges

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanavillil, N., Kurissery, S. Dynamics of grazing protozoa follow that of microalgae in natural biofilm communities. Hydrobiologia 718, 93–107 (2013). https://doi.org/10.1007/s10750-013-1606-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1606-6

Keywords

Navigation