, Volume 718, Issue 1, pp 93–107 | Cite as

Dynamics of grazing protozoa follow that of microalgae in natural biofilm communities

  • Nandakumar Kanavillil
  • Sreekumari Kurissery
Primary Research Paper


This study investigates the dynamics of protozoan community in biofilms formed on inert artificial surfaces suspended in various freshwater environments. The results also test the hypothesis that the dynamics of protozoan and microalgal communities in biofilms are interdependent because the latter form one of the major food items of benthic protozoa. Cleaned glass slides were suspended in surface waters at four sampling locations to collect biofilm communities. The glass slides after retrieval were observed under a microscope for diatom and protozoan density and their generic composition. Members of protozoa belonging to phylum Sarcomastigophora dominated the protozoan community followed by phylum Ciliophora in all sampling locations. The variation of protozoan feeding groups showed an initial abundance of autotrophs/holophytes which gave way to heterotrophs, predators, and bacterivores towards the end of the study. The density and generic composition of protozoa varied significantly with the age of biofilm and sampling location. The density variation of protozoa followed that of diatoms in all four sampling locations and this has resulted in a significant positive correlation between diatom and protozoan densities. This suggests the dependency and/or food web connectedness of these two communities in natural biofilms.


Biofilm protozoa Lentic system Natural biofilms Diatoms Water quality 



This work was supported by Lakehead University Research Development Fund. Undergraduate students Diane Mitchell and Katelyn Weel helped in data collection.


  1. Ackermann, B., M. Esser, A. Scherwass & H. Arndt, 2011. Long-term dynamics of microbial biofilm communities of the River Rhine with special references to ciliates. International Review of Hydrobiology 96: 1–19.CrossRefGoogle Scholar
  2. Bakke, R. & P. Q. Olsson, 1986. Biofilm thickness measurements by light microscopy. Journal of Microbiology Methods 5: 93–98.CrossRefGoogle Scholar
  3. Bohme, A., U. Risse-Buhl & K. Kusel, 2009. Protists with different feeding modes change biofilm morphology. FEMS Microbiology Ecology 69: 158–169.PubMedCrossRefGoogle Scholar
  4. Bott, T. L. & M. A. Borchardt, 1999. Grazing of protozoan, bacteria and diatoms by meiofauna in lotic epibenthic communities. Journal of North American Benthic Society 18: 499–513.CrossRefGoogle Scholar
  5. Campbell, J. S. & H. R. McCrimmon, 1970. Biology of the emerald shiner Notropis antherinoides Rafinesque in Lake Simcoe. Canadian Journal of Fishery Biology 2: 259–273.CrossRefGoogle Scholar
  6. Caron, D. A., P. G. Davis, L. P. Madin & J. M. Sieburth, 1982. Heterotrophic bacteria and bacterivorous protozoa in oceanic macro aggregates. Science 218: 795.PubMedCrossRefGoogle Scholar
  7. Caron, D. A., P. G. Davis, L. P. Madin & J. M. Sieburth, 1986. Enrichment of microbial populations in macroaggregates (marine snow) from surface waters of the North Atlantic. Journal of Marine Research 44: 543–565.CrossRefGoogle Scholar
  8. Carrick, H. J., G. L. Fahenstiel & W. D. Taylor, 1992. Growth and production of planktonic protozoa in Lake Michigan: in situ versus in vitro comparisons and importance of food web dynamics. Limnology Oceanography 37: 1221–1235.CrossRefGoogle Scholar
  9. Characklis, W. G., G. A. McFeters & K. C. Marshall, 1990. Physiological ecology in biofilm systems. In Characklis, W. G. & K. C. Marshall (eds), Biofilms. Wiley, New York.Google Scholar
  10. Costerton, J. W., K. J. Cheng, G. C. Geesey, T. I. Ladd, J. C. Nickel, M. Dasgupta & T. J. Marie, 1987. Bacterial biofilms in nature and disease. Annual Review of Microbiology 41: 435–464.PubMedCrossRefGoogle Scholar
  11. Curds, C. R., A. Cockburn & J. M. Vandyke, 1968. An experimental study of the role of the ciliated protozoa in the activated sludge process. Water Pollution Control 67: 312–329.Google Scholar
  12. Dopheide, A., G. Lear, R. Stott & G. Lewis, 2009. Relative diversity and community structure of ciliates in stream biofilms according to molecular and microscopy methods. Applied and Environmental Microbiology 75: 5261–5272.PubMedCrossRefGoogle Scholar
  13. Dopheide, A., G. Lear, R. Stott & G. Lewis, 2011. Preferential feeding by the ciliates Chilodonella and Tetrahymena spp. and effects of these protozoa on bacterial biofilm structure and composition. Applied Environmental Microbiology 77: 4564–4572.PubMedCrossRefGoogle Scholar
  14. Eaton, A. D., L. S. Clesceri, E. W. Rice & A. E. Greenberg (eds), 2005. Standard Methods for the Examination of Water and Wastewater, Centennial edition. American Public Health Association, Washington, DC.Google Scholar
  15. Epstein, S. S., 1997. Microbial food webs in marine sediments. I. Trophic interactions and grazing rates in two tidal flat communities. Microbial Ecology 34: 188–198.PubMedCrossRefGoogle Scholar
  16. Fenchel, T., 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Marne Ecology Progress Series 9: 35–42.CrossRefGoogle Scholar
  17. Hastings, A., J. E. Byers, K. Cuddington, G. Clive, C. G. Jones, J. G. Labrinos, et al., 2007. Ecosystem engineering in space and time. Ecology Letters 10: 153–164.PubMedCrossRefGoogle Scholar
  18. Hunt, A. P. & J. D. Parry, 1998. The effect of substratum roughness and river flow rate on the development of a freshwater biofilm community. Biofouling 12: 287–303.CrossRefGoogle Scholar
  19. Jonsson, P. R., 1986. Particle size selection, feeding rates and growth dynamics of marine planktonic oligotrichus ciliates (Ciliophora: Oligotrichina). Marine Ecology Progress Series 33: 265–277.CrossRefGoogle Scholar
  20. Kanavillil N., M. Thorn & S. Kurissery, 2012. Characterization of natural biofilms in temperate inland waters. Journal of Great Lakes Research. doi: 10.1016/j.jglr.2012.06.014.
  21. Kathol, M., H. Fischer & M. Weitere, 2011. Contribution of biofilm dwelling consumers to pelagic–benthic coupling in a large river. Freshwater Ecology 56: 1017–1030.CrossRefGoogle Scholar
  22. Khatoon, H., F. M. Yusoff, S. Banerjee, M. Shariff & S. Mohamed, 2007. Use of periphytic cyanobacterium and mixed diatoms coated substrate for improving water quality, survival and growth of Penaeus monodon Fabricius postlarvae. Aquaculture 27: 196–205.CrossRefGoogle Scholar
  23. Lake Simcoe Environmental Management Strategy (LSEMS), 2003. State of the Lake Simcoe Watershed 2003. Lake Simcoe Region Conservation Authority, New Market, ON.Google Scholar
  24. Lamb, L. A. & R. L. Lowe, 1987. Effects of current velocity on the physical structuring of diatom (Bacillariophyceae) communities. Ohio Journal of Science 87: 72–78.Google Scholar
  25. Lee, J. J., S. H. Hunter & E. C. Bovee, 1985. An Illustrated Guide to the Protozoa. Society of Protozoologists, Lawrence: 615.Google Scholar
  26. Lee, J. J., G. F. Keedale & P. Bradbury, 2000. An Illustrated Guide to the Protozoa, Vols. I & II, 2nd ed. Society of Protozoologists, Lawrence: 1425 pp.Google Scholar
  27. Lessard, E. J., M. P. Martin & D. J. S. Montagnes, 1996. A new method for live-staining protists with DAPI and its application as a tracer of ingestion by walleye Pollock (Theragra chalcogramma (Pallas) larvae. Journal of Experimental Marine Biology and Ecology 204: 43–57.CrossRefGoogle Scholar
  28. Lower Colorado River Authority (LCRA), 2011. Water quality indicators. Key measures provide a snapshot of conditions.
  29. MacLeod, F. A., S. R. Guiot & J. W. Costerton, 1990. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Applied Environmental Microbiology 56: 1598–1607.PubMedGoogle Scholar
  30. Madoni, P., 1994. A sludge biotic index (SBI) for the evaluation of the biological performance of activated sludge plants based on the microfauna analysis. Water Research 28: 67–75.CrossRefGoogle Scholar
  31. Morin, S., S. Pesce, A. Tlili, M. Coste & B. Montuelle, 2010. Recovery potential of periphytic communities in a river impacted by vineyard watershed. Ecological Indicators 10: 419–426.CrossRefGoogle Scholar
  32. Paine, R. T., 1966. Food complexity and species diversity. The American Naturalist 100: 65–75.CrossRefGoogle Scholar
  33. Parry, J. D., 2004. Protozoan grazing of freshwater biofilms. Advances in Applied Microbiology 54: 167–196.PubMedCrossRefGoogle Scholar
  34. Pederson, K., 1990. Biofilm development on stainless steel and pvc surfaces in drinking water. Water Research 24: 239–243.CrossRefGoogle Scholar
  35. Pratt, J. & J. Cairns Jr, 1985. Functional groups in the Protozoa: roles in differing ecosystems. Journal of Protozoology 32: 415–423.CrossRefGoogle Scholar
  36. Prescott, G. W., 1978. How to Know Freshwater Algae. W.C. Brown, Dubuque.Google Scholar
  37. Ricklefs, R. E., 2001. The Economy of Nature. W.H. Freeman and Company, New York.Google Scholar
  38. Risse-Buhl, U. & K. Kusel, 2009. Colonization dynamics of biofilm-associated ciliate morphotypes at different flow velocities. European Journal of Protistology 45: 64–76.PubMedCrossRefGoogle Scholar
  39. Round, F. E., R. M. Crawford & D. G. Mann, 1990. Diatoms: Biology and Morphology of the Genera. Cambridge University Press, New York.Google Scholar
  40. Sekar, R., V. P. Venugoplalan, K. Nandakumar, K. V. K. Nair & V. N. R. Rao, 2004. Early stages of biofilm succession in a lentic freshwater environment. Hydrobiologia 512: 97–108.CrossRefGoogle Scholar
  41. Sherr, E. B., B. F. Sherr & J. McDaniel, 1991. Clearance rate of <6 μm fluorescence labeled algae (FLA) by estuarine protozoa: potential grazing impact of flagellates and ciliates. Marine Ecology Progress Series 69: 81–92.CrossRefGoogle Scholar
  42. Sieburth, J. M., 1984. Protozoan bacterirory in pelagic marine waters. In Hobbie, J. E. & P. J. L. Williams (eds), Heterotrophic Activity in the Sea. Plenum press, New York: 405–444.CrossRefGoogle Scholar
  43. Stewart, P. M., J. R. Pratt, J. Jr, R. L. Cairns & Lowe, 1985. Diatom and protozoan species accrual on artificial substrates in lentic habitats. Transaction of American Microbiology Society 104: 369–377.CrossRefGoogle Scholar
  44. Suttle, C. A., A. M. Chan, W. D. Taylor & P. J. Harrison, 1986. Grazing of planktonic diatoms by microflagellates. Journal of Plankton Research 8: 393–398.CrossRefGoogle Scholar
  45. Verity, P. G., 1985. Grazing, respiration, excretion and growth rates of tintinnids. Limnology and Oceanography 33: 245–255.Google Scholar
  46. Weerman, E. J., H. G. Van Der Geest, M. D. Van Der Meulen, E. M. M. Manders, J. Van de Koppel, P. M. J. Herman & W. Admiraal, 2011. Ciliates as engineers of phototrohic biofilms. Freshwater Biology 56: 1358–1369.CrossRefGoogle Scholar
  47. Weitere, M., K. Schmidt-Denter & H. Arndt, 2003. Laboratory experiments on the impact of biofilms on the plankton of a large river. Freshwater Biology 48: 1983–1992.CrossRefGoogle Scholar
  48. Wey, J. K., A. Scherwass, H. Norf, H. Arndt & M. Weitere, 2008. Effects of protozoan grazing within river biofilms under semi-natural conditions. Aquatic Microbial Ecology 52: 283–296.CrossRefGoogle Scholar
  49. Wey, J. K., K. Jurgens & M. Weitere, 2012. Seasonal and successional influences on bacterial community composition exceed that of protozoan grazing in river biofilms. Applied Environmental Microbiology 78: 2013–2024.PubMedCrossRefGoogle Scholar
  50. Winter, J., M. C. Eimers, P. J. Dillon, L. D. Scott, W. A. Shceider & C. C. Willox, 2007. Phosphorus inputs to Lake Simcoe from 1990–2003: declines to tributary loads and observations on lake water quality. International Association of Great Lakes Research 33: 381–396.CrossRefGoogle Scholar
  51. Zhang, W., H. Xu, Y. Jiang, M. Zhu & K. A. S. Al-Rasheid, 2012. Colonization dynamics in trophic-functional structure of periphytic protest communities in coastal waters. Marine Biology 159: 735–748.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Lakehead UniversityOrilliaCanada

Personalised recommendations