Skip to main content

Advertisement

Log in

The impact of land use on the mussel Margaritifera margaritifera and its host fish Salmo trutta

  • FRESHWATER BIVALVES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Today, land use impacts a major proportion of all streams. Here, landscape features in corridors along streams and water chemical factors were analyzed in relation to recruitment of the threatened freshwater pearl mussel (Margaritifera margaritifera) and its host fish the brown trout (Salmo trutta). Mussel recruitment and trout density were negatively related to forest clear-cuts. Mussel recruitment was negatively related to water color and turbidity. Therefore, the threats to the mussel may be severe, as low mussel recruitment may be caused by direct effects on the juvenile mussels and indirect effects on the host fish. High proportions of lakes and ponds were found to be positive for recruitment and for trout, and deciduous forest was positively related to trout. The combination of investigations at different scales at the landscape level and at in-stream levels may be applicable to find threats to other threatened species. The results indicate that forestry activities may negatively affect recruitment of freshwater pearl mussels and its host fish. Reductions of forestry activities and the retaining of intact quantity and quality of the riparian zones next to streams, both for the mussel and its host fish may be important conservation measures to restore freshwater pearl mussel populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agren, A. & S. Lofgren, 2012. pH sensitivity of Swedish forest streams related to catchment characteristics and geographical location – implications for forest bioenergy harvest and ash return. Forest Ecology and Management 276: 10–23.

    Article  Google Scholar 

  • Allan, J. D., 1995. Stream Ecology: Structure and Function of Running Waters. Kluwer, Dordrecht.

    Book  Google Scholar 

  • Allan, J., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology Evolution and Systematics 35: 257–284.

    Article  Google Scholar 

  • Arvidsson, B. L., J. Karlsson & M. E. Österling, 2012. Recruitment of the threatened mussel Margaritifera margaritifera in relation to mussel population size, mussel density and host density. Aquatic Conservation: Marine and Freshwater Ecosystems 22: 526–532.

    Article  Google Scholar 

  • Ashmore, P., F. M. Conly, D. deBoer, Y. Martin, E. Petticrew, A. Roy, 2000. Recent (1995–1998) Canadian research on contemporary processes of river erosion and sedimentation, and river mechanics. Hydrological Processes 14(9): 1687–1706.

    Google Scholar 

  • Bauer, G., 1987a. Reproductive strategy of the freshwater pearl mussel Margaritifera margaritifera. Journal of Animal Ecology 56: 691–704.

    Article  Google Scholar 

  • Bauer, G., 1987b. The parasitic stage of the freshwater pearl mussel (Margaritifera margaritifera L.) 3. Host relationships. Archiv für Hydrobiologie 76: 413–423.

    Google Scholar 

  • Bauer, G., 1987c. The parasitic stage of the freshwater pearl mussel (Margaritifera margaritifera L.) 2. Susceptibility of brown trout. Archiv für Hydrobiologie 76: 403–412.

    Google Scholar 

  • Bauer, G. & C. Vogel, 1987. The parasitic stage of the freshwater pearl mussel (Margaritifera margaritifera L.) 1. Host response to glochidiosis. Archiv für Hydrobiologie 76: 393–402.

    Google Scholar 

  • Bogan, A. E., 1993. Fresh-water bivalve extinctions (Mollusca, Unionoida) – a search for causes. American Zoologist 33: 599–609.

    Google Scholar 

  • Bohlin, T., S. Hamrin, T. G. Heggberget, G. Rasmussen & S. J. Saltveit, 1989. Electrofishing – theory and practice with special emphasis on salmonids. Hydrobiologia 173: 621–630.

    Article  Google Scholar 

  • Boulton, A. J., 2007. Hyporheic rehabilitation in rivers: restoring vertical connectivity. Freshwater Biology 52 (4): 632–650.

    Google Scholar 

  • Box, J. B. & J. Mossa, 1999. Sediment, land use, and freshwater mussels: prospects and problems. Journal of the North American Benthological Society 18: 99–117.

    Article  Google Scholar 

  • Cosgrove, P. J. & L. C. Hastie, 2001. Conservation of threatened freshwater pearl mussel populations: river management, mussel translocation and conflict resolution. Biological Conservation 99: 183–190.

    Article  Google Scholar 

  • Dale, V., S. Brown, R. Haeuber, N. Hobbs, N. Huntly, R. Naiman, W. Riebsame, M. Turner & T. Valone, 2000. Ecological principles and guidelines for managing the use of land. Ecological Applications 10: 639–670.

    Google Scholar 

  • Eriksson, M. O. G., L. Henriksson & H. Soderberg, 1998. The freshwater pearl mussel in Sweden. The Swedish Environmental Protection Agency 4887: 1–66.

    Google Scholar 

  • Eros, T., P. Gustafsson, L. A. Greenberg & E. Bergman, 2012. Forest-stream linkages: effects of terrestrial invertebrate input and light on diet and growth of brown trout (Salmo trutta) in a boreal forest stream. PloS ONE 7: e36462.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geist, J., 2011. Integrative freshwater ecology and biodiversity conservation. Ecological Indicators 11: 1507–1516.

    Article  Google Scholar 

  • Geist, J. & K. Auerswald, 2007. Physicochemical stream bed characteristics and recruitment of the freshwater pearl mussel (Margaritifera margaritifera). Freshwater Biology 52: 2299–2316.

    Article  Google Scholar 

  • Hastie, L. C. & M. R. Young, 2001. Freshwater pearl mussel (Margaritifera margaritifera) glochidiosis in wild and farmed salmonid stocks in Scotland. Hydrobiologia 445: 109–119.

    Article  Google Scholar 

  • Hastie, L. C., P. J. Boon & M. R. Young, 2000. Physical microhabitat requirements of freshwater pearl mussels, Margaritifera margaritifera (L.). Hydrobiologia 429: 59–71.

    Article  Google Scholar 

  • Holopainen, A. & P. Huttunen, 1992. Effects of forest clear-cutting and soil disturbance on the biology of small forest brooks. Hydrobiologia 243: 457–464.

    Article  Google Scholar 

  • Hutchens, J. J. Jr., J. A. Schuldt, C. Richards, L. B. Johnson, G. E. Host & D. H. Breneman, 2009. Multi-scale mechanistic indicators of Midwestern USA stream macroinvertebrates. Ecological Indicators 9: 1138–1150.

    Article  Google Scholar 

  • Jones, J. A., F. J. Swanson, B. C. Wemple & K. U. Snyder, 2000. Effects of roads on hydrology, geomorphology, and disturbance patches in stream networks. Conservation Biology 14: 76–85.

    Article  Google Scholar 

  • Kaase, C. T. & G. L. Katz, 2012. Effects of stream restoration on woody riparian vegetation of Southern Appalachian Mountain Streams, North Carolina, USA. Restoration Ecology 20: 647–655.

    Article  Google Scholar 

  • Li, F., N. Chung, M. Bae, Y. Kwon & Y. Park, 2012. Relationships between stream macroinvertebrates and environmental variables at multiple spatial scales. Freshwater Biology 57: 2107–2124.

    Article  Google Scholar 

  • Lydeard, C., R. H. Cowie, W. F. Ponder, A. E. Bogan, P. Bouchet, S. A. Clark, K. S. Cummings, T. J. Frest, O. Gargominy, D. G. Herbert, R. Hershler, K. E. Perez, B. Roth, M. Seddon, E. E. Strong & F. G. Thompson, 2004. The global decline of nonmarine mollusks. Bioscience 54: 321–330.

    Article  Google Scholar 

  • Nurnberg, G. & M. Shaw, 1998. Productivity of clear and humic lakes: nutrients, phytoplankton, bacteria. Hydrobiologia 382: 97–112.

    Article  Google Scholar 

  • Österling, M. E., 2011. Test and application of a non-destructive photo-method investigating the parasitic stage of the threatened mussel Margaritifera margaritifera on its host fish Salmo trutta. Biological Conservation 144: 2984–2990.

    Article  Google Scholar 

  • Österling, M., E. Bergman, L. Greenberg, B. S. Baldwin & E. L. Mills, 2007. Turbidity-mediated interactions between invasive filter-feeding mussels and native bioturbating mayflies. Freshwater Biology 52: 1602–1610.

    Article  Google Scholar 

  • Österling, E. M., L. A. Greenberg & B. A. Arvidsson, 2008. Relationship of biotic and abiotic factors to recruitment patterns in Margaritifera margaritifera. Biological Conservation 141: 1365–1370.

    Article  Google Scholar 

  • Österling, M. E., B. L. Arvidsson & L. A. Greenberg, 2010. Habitat degradation and the decline of the threatened mussel Margaritifera margaritifera: influence of turbidity and sedimentation on the mussel and its host. Journal of Applied Ecology 47: 759–768.

    Article  Google Scholar 

  • Richards, C. & G. Host, 1994. Examining land-use influences on stream habitats and macroinvertebrates – a GIS approach. Water Resources Bulletin 30: 729–738.

    Article  Google Scholar 

  • Salemi, L. F., J. D. Groppo, R. Trevisan, J. M. de Moraes, W. de Paula Lima & L. A. Martinelli, 2012. Riparian vegetation and water yield: a synthesis. Journal of Hydrology 454: 195–202.

    Article  Google Scholar 

  • Sirombra, M. G. & L. M. Mesa, 2012. A method for assessing the ecological quality of riparian forests in subtropical Andean streams: QBRy index. Ecological Indicators 20: 324–331.

    Article  Google Scholar 

  • Strayer, D. L., 2008. Freshwater Mussel Ecology. A Multifactor Approach to Mussel Distribution and Abundance. University of California Press, Berkeley.

    Book  Google Scholar 

  • Strayer, D. L., J. A. Downing, W. R. Haag, T. L. King, J. B. Layzer, T. J. Newton & S. J. Nichols, 2004. Changing perspectives on pearly mussels, North America’s most imperiled animals. Bioscience 54: 429–439.

    Article  Google Scholar 

  • Wood, P. J. & P. D. Armitage, 1997. Biological effects of fine sediment in the lotic environment. Environmental Management 21: 203–217.

    Article  PubMed  Google Scholar 

  • Wyzga, B., J. Zawiejska, A. Radecki-Pawlik & H. Hajdukiewicz, 2012. Environmental change, hydromorphological reference conditions and the restoration of Polish Carpathian rivers. Earth Surface Processes and Landforms 37: 1213–1226.

    Article  Google Scholar 

  • Young, M. R., P. J. Cosgrove & L. C. Hastie, 2001. The Extent of, and Causes for, the Decline of a Highly Threatened Naiad: Margaritifera margaritifera. In Bauer, G. & K. Wächtler (eds), Ecology and Evolution of the Freshwater Mussels Unionoida. Ecological Studies, Vol. 145. Springer, Berlin: 337–357.

    Chapter  Google Scholar 

Download references

Acknowledgments

Andreas Karlberg and Håkan Söderberg at Västernorrland County administrative board for help in obtaining the geographic and water chemistry data. Björn Arvidsson and John Piccolo for earlier comments on this manuscript. Martin Österling was financed by Karlstad University, Fortums Nordiska Miljöfond, and the Knowledge Foundation (KK-stiftelsen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Österling.

Additional information

Guest editors: Manuel P. M. Lopes-Lima, Ronaldo G. Sousa, Simone G. P. Varandas, Elsa M. B. Froufe & Amílcar A. T. Teixeira / Biology and Conservation of Freshwater Bivalves

Rights and permissions

Reprints and permissions

About this article

Cite this article

Österling, M., Högberg, JO. The impact of land use on the mussel Margaritifera margaritifera and its host fish Salmo trutta . Hydrobiologia 735, 213–220 (2014). https://doi.org/10.1007/s10750-013-1501-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1501-1

Keywords

Navigation