Advertisement

Hydrobiologia

, Volume 713, Issue 1, pp 115–125 | Cite as

A cost-effective method to quantify biological surface sediment reworking

  • Eve De Nadaï-Monoury
  • Antoine Lecerf
  • Julie Canal
  • Laëtitia Buisson
  • Pascal Laffaille
  • Franck Gilbert
Primary Research Paper

Abstract

We propose a simple and inexpensive method to determine the rate and pattern of surface sediment reworking by benthic organisms. Unlike many existing methods commonly used in bioturbation studies, which usually require sediment sampling, our approach is fully non-destructive and is well suited for investigating non-cohesive fine sediments in streams and rivers. Optical tracer (e.g. luminophores or coloured sand) disappearance or appearance is assessed through time based on optical quantification of surfaces occupied by tracers. Data are used to calculate surface sediment reworking (SSR) coefficients depicting bioturbation intensities. Using this method, we evaluated reworking activity of stream organisms (three benthic invertebrates and a fish) in laboratory microcosms mimicking pool habitats or directly in the field within arenas set in depositional zones. Our method was sensitive enough to measure SSR as low as 0.2 cm2 day−1, such as triggered by intermediate density (774 m−2) of Gammarus fossarum (Amphipoda) in microcosms. In contrast, complex invertebrate community in the field and a fish (Barbatula barabatula) in laboratory microcosms were found to yield to excessively high SSR (>60 cm2 day−1). Lastly, we suggest that images acquired during experiments can be used for qualitative evaluation of species-specific effects on sediment distribution.

Keywords

Bioturbation Sediment reworking Optical tracers Benthic organism Invertebrates Fishes 

Notes

Acknowledgements

Authors are grateful for the help provided by Séverine Jean during fish field experiment. Thanks are also due to the associate editor and anonymous reviewers for their insightful comments which improved the manuscript. This work was supported by the Conseil Régional Midi-Pyrénées in the frame of the Action Interrégionale Aquitaine & Midi-Pyrénées “GAGILAU”, by the French ANR programme “ADAPT’EAU” (project ANR-11-CEPL-008), and by the “Biodiversity and Forest Management” programme (project SYLECOL) funded by the French Ministry of Environment. This paper is the Nereis Park contribution number #34.

References

  1. Aller, R. C., 1988. Benthic fauna and biogeochemical processes in marine sediments: the role of burrow structures. In Blackburn, T. H. & J. Sørensen (eds), Nitrogen Cycling in Marine Environments. Wiley, New-York: 301–338.Google Scholar
  2. Berg, P., S. Rysgaard, P. Funch & M. K. Sejr, 2001. Effects of bioturbation on solutes and solids in marine sediments. Aquatic Microbiology Ecology 26: 81–94.CrossRefGoogle Scholar
  3. Covich, A. P., M. A. Palmer & T. A. Crowl, 1999. The role of benthic invertebrate species in freshwater ecosystems. BioScience 49: 119–127.CrossRefGoogle Scholar
  4. Creed, R. P., A. Taylor & J. R. Pflaum, 2010. Bioturbation by a dominant detritivore in a headwater stream: litter excavation and effects on community structure. Oikos 119: 1870–1876.CrossRefGoogle Scholar
  5. Dafoe, L. T., A. L. Rygh, B. Yang, M. K. Gingras & G. Pemberton, 2011. A new technique for assessing tubificid burrowing activities, and recognition of biogenic grading formed by these oligochaetes. Palaios 26: 66–80.CrossRefGoogle Scholar
  6. Dangles, O., 2002. Aggregation of shredder invertebrates associated with benthic detrital pools in seven headwater forested streams. Verhandlungen – Internationale Vereinigung für theoretische und angewandte Limnologie 28: 1–4.Google Scholar
  7. François, F., J.-C. Poggiale, J.-P. Durbec & G. Stora, 2001. A new model of bioturbation for a functional approach to sediment reworking resulting from macrobenthic communities. In Aller J. Y., S. A. Woodin, R. C. Aller (eds), Organism-Sediment Interactions, Vol. 21. University of South Carolina, The Belle W. Baruch Library in Marine Science, Columbia: 73–86.Google Scholar
  8. Friberg, N. & S. E. Larsen, 1998. Microhabitat selection by stream invertebrates: importance of detritus aggregations. Verhandlungen - Internationale Vereinigung für theoretische und angewandte Limnologie 26: 1016–1020.Google Scholar
  9. Gerino, M., R. C. Aller, C. Lee, J. K. Cochran, J. Y. Aller, M. A. Green & D. Hirschberg, 1998. Comparison of different tracers and methods used to quantify bioturbation during a spring bloom: 234-Thorium, luminophores and Chlorophyll a. Estuarine, Coastal and Shelf Science 46: 531–547.CrossRefGoogle Scholar
  10. Gilbert, F., S. Hulth, N. Strömberg, K. Ringdahl & J.-C. Poggiale, 2003. 2-D optical quantification of particle reworking activities in surface marine sediments. Journal of Experimental Marine Biology and Ecology 285(286): 251–263.CrossRefGoogle Scholar
  11. Gilbert, F., S. Hulth, V. Grossi, J.-C. Poggiale, G. Desrosiers, R. Rosenberg, M. Gérino, F. François-Carcaillet, E. Michaud & G. Stora, 2007. Sediment reworking by marine benthic species from the Gullmar Fjord (Western Sweden): importance of faunal biovolume. Journal of Experimental Marine Biology and Ecology 348: 133–144.CrossRefGoogle Scholar
  12. Hollertz, K. & J. C. Duchene, 2001. Burrowing behaviour and sediment reworking in the heart urchin Brissopsis lyrifera Forbes (Spatangoida). Marine Biology 139: 951–957.CrossRefGoogle Scholar
  13. Huryn, A. D. & J. B. Wallace, 1987. Local morphology as a determinant of macrofaunal production in a mountain stream. Ecology 68: 1932–1942.CrossRefGoogle Scholar
  14. Kristensen, E., G. Penha-Lopes, M. Delefosse, T. Valdemarsen, C. O. Quintana & G. T. Banta, 2012. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Marine Ecology Progress Series 446: 285–302.CrossRefGoogle Scholar
  15. Lagauzère, S., P. Boyer, G. Stora & J. M. Bonzom, 2009. Effects of uranium-contaminated sediments on the bioturbation activity of Chironomus riparius larvae (Insecta, Diptera) and Tubifex tubifex worms (Annelida, Tubificidae). Chemosphere 76: 324–334.PubMedCrossRefGoogle Scholar
  16. Maire, O., J. C. Duchene, L. Bigot & A. Gremare, 2007. Linking feeding activity and sediment reworking in the deposit-feeding bivalve Abra ovata with image analysis, laser telemetry and luminophore tracers. Marine Ecology Progress Series 351: 139–150.CrossRefGoogle Scholar
  17. Maire, O., P. Lecroart, F. J. R. Meysman, R. Rosenberg, J. C. Duchene & A. Gremare, 2008. Methods of sediment reworking assessment in bioturbation research: a review. Aquatic Biology 2: 219–238.CrossRefGoogle Scholar
  18. Marmonier, P., G. Archambaud, N. Belaidi, N. Bougon, P. Breil, E. Chauvet, C. Claret, J. Cornut, T. Datry, M.-J. Dole-Olivier, B. Dumont, N. Flipo, A. Foulquier, M. Gérino, A. Guilpart, F. Julien, C. Maazouzi, D. Martin, F. Mermillod-Blondin, B. Montuelle, P. Namour, S. Navel, D. Ombredane, T. Pelte, C. Piscart, M. Pusch, S. Stroffek, A. Robertson, J.-M. Sanchez-Pérez, S. Sauvage, A. Taleb, M. Wantzen & P. Vervier, 2012. The role of organisms in hyporheic processes: gaps in current knowledge, needs for future research and applications. Annales de Limnologie – International Journal of Limnology. 48: 253–266.CrossRefGoogle Scholar
  19. Mazik, K. & M. Elliott, 2000. The effects of chemical pollution on the bioturbation potential of estuarine intertidal mudflats. Helgoland Marine Research 54: 99–109.CrossRefGoogle Scholar
  20. Mermillod-Blondin, F. & R. Rosenberg, 2006. Ecosystem engineering: the impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquatic Sciences 68: 434–442.CrossRefGoogle Scholar
  21. Mermillod-Blondin, F., R. Rosenberg, F. François-Carcaillet, K. Norling & L. Mauclaire, 2004. Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquatic Microbial Ecology 36: 271–284.CrossRefGoogle Scholar
  22. Moore, J. W., 2006. Animal ecosystem engineers in streams. BioScience 56: 237–246.CrossRefGoogle Scholar
  23. Mulsow, S., P. F. Landrum & J. A. Robbins, 2002. Biological mixing responses to sublethal concentrations of DDT in sediments by Heteromastus filiformis using a 137Cs marker layer technique. Marine Ecology Progress Series 239: 181–191.CrossRefGoogle Scholar
  24. Navel, S., F. Mermillod-Blondin, B. Montuelle, E. Chauvet & P. Marmonier, 2012. Sedimentary context controls the influence of ecosystem engineering by bioturbators on microbial processes in river sediments. Oikos 121: 1134–1144.CrossRefGoogle Scholar
  25. Palmer, M. A. & C. A. Febria, 2012. The heartbeat of ecosystems. Science 336: 1393–1394.PubMedCrossRefGoogle Scholar
  26. R Development Core Team, 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  27. Robert, K. & S. K. Juniper, 2012. Surface-sediment bioturbation quantified with cameras on the NEPTUNE Canada cabled observatory. Marine Ecology Progress Series 453: 137–149.CrossRefGoogle Scholar
  28. Sanpera-Calbet, I., E. Chauvet & J. Richardson, 2012. Fine sediment on leaves: shredder removal of sediment does not enhance fungal colonisation. Aquatic Sciences 74: 527–538.CrossRefGoogle Scholar
  29. Schmidt, S., J. M. Jouanneau, O. Weber, P. Lecroart, O. Radakovitch, F. Gilbert & D. Jezequel, 2007. Sedimentary processes in the Thau Lagoon (South France): from seasonal to century time scales. Estuarine, Coastal and Shelf Science 72: 534–542.CrossRefGoogle Scholar
  30. Solan, M., B. D. Wigham, I. R. Hudson, R. Kennedy, C. H. Coulon, K. Norling, H. C. Nilsson & R. Rosenberg, 2004. In situ quantification of bioturbation using time-lapse fluorescent sediment profile imaging (f-SPI), luminophore tracers and model simulation. Marine Ecology Progress Series 271: 1–12.CrossRefGoogle Scholar
  31. Statzner, B., 2012. Geomorphological implications of engineering bed sediments by lotic animals. Geomorphology 157: 49–65.CrossRefGoogle Scholar
  32. Sun, M.-Y., R. C. Aller & C. Lee, 1991. Early diagenesis of chlorophyll-a in Long Island Sound sediments: a measure of carbon flux and particle reworking. Journal of Marine Research 49: 379–401.CrossRefGoogle Scholar
  33. Zanetell, B. A. & B. L. Peckarsky, 1996. Stoneflies as ecological engineers—hungry predators reduce fine sediments in stream beds. Freshwater Biology 36: 569–577.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Eve De Nadaï-Monoury
    • 1
    • 2
  • Antoine Lecerf
    • 1
    • 2
  • Julie Canal
    • 3
    • 4
  • Laëtitia Buisson
    • 1
    • 2
  • Pascal Laffaille
    • 3
    • 4
  • Franck Gilbert
    • 1
    • 2
  1. 1.UPS, INP, EcoLab (Laboratoire écologie fonctionnelle et environnement), Université de ToulouseToulouse Cedex 9France
  2. 2.CNRS, EcoLabToulouseFrance
  3. 3.INP, UPS, EcoLab (Laboratoire écologie fonctionnelle et environnement), ENSAT, Université de ToulouseCastanet TolosanFrance
  4. 4.CNRS, EcoLabCastanet TolosanFrance

Personalised recommendations