Skip to main content
Log in

A cost-effective method to quantify biological surface sediment reworking

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We propose a simple and inexpensive method to determine the rate and pattern of surface sediment reworking by benthic organisms. Unlike many existing methods commonly used in bioturbation studies, which usually require sediment sampling, our approach is fully non-destructive and is well suited for investigating non-cohesive fine sediments in streams and rivers. Optical tracer (e.g. luminophores or coloured sand) disappearance or appearance is assessed through time based on optical quantification of surfaces occupied by tracers. Data are used to calculate surface sediment reworking (SSR) coefficients depicting bioturbation intensities. Using this method, we evaluated reworking activity of stream organisms (three benthic invertebrates and a fish) in laboratory microcosms mimicking pool habitats or directly in the field within arenas set in depositional zones. Our method was sensitive enough to measure SSR as low as 0.2 cm2 day−1, such as triggered by intermediate density (774 m−2) of Gammarus fossarum (Amphipoda) in microcosms. In contrast, complex invertebrate community in the field and a fish (Barbatula barabatula) in laboratory microcosms were found to yield to excessively high SSR (>60 cm2 day−1). Lastly, we suggest that images acquired during experiments can be used for qualitative evaluation of species-specific effects on sediment distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aller, R. C., 1988. Benthic fauna and biogeochemical processes in marine sediments: the role of burrow structures. In Blackburn, T. H. & J. Sørensen (eds), Nitrogen Cycling in Marine Environments. Wiley, New-York: 301–338.

    Google Scholar 

  • Berg, P., S. Rysgaard, P. Funch & M. K. Sejr, 2001. Effects of bioturbation on solutes and solids in marine sediments. Aquatic Microbiology Ecology 26: 81–94.

    Article  Google Scholar 

  • Covich, A. P., M. A. Palmer & T. A. Crowl, 1999. The role of benthic invertebrate species in freshwater ecosystems. BioScience 49: 119–127.

    Article  Google Scholar 

  • Creed, R. P., A. Taylor & J. R. Pflaum, 2010. Bioturbation by a dominant detritivore in a headwater stream: litter excavation and effects on community structure. Oikos 119: 1870–1876.

    Article  Google Scholar 

  • Dafoe, L. T., A. L. Rygh, B. Yang, M. K. Gingras & G. Pemberton, 2011. A new technique for assessing tubificid burrowing activities, and recognition of biogenic grading formed by these oligochaetes. Palaios 26: 66–80.

    Article  Google Scholar 

  • Dangles, O., 2002. Aggregation of shredder invertebrates associated with benthic detrital pools in seven headwater forested streams. Verhandlungen – Internationale Vereinigung für theoretische und angewandte Limnologie 28: 1–4.

    Google Scholar 

  • François, F., J.-C. Poggiale, J.-P. Durbec & G. Stora, 2001. A new model of bioturbation for a functional approach to sediment reworking resulting from macrobenthic communities. In Aller J. Y., S. A. Woodin, R. C. Aller (eds), Organism-Sediment Interactions, Vol. 21. University of South Carolina, The Belle W. Baruch Library in Marine Science, Columbia: 73–86.

  • Friberg, N. & S. E. Larsen, 1998. Microhabitat selection by stream invertebrates: importance of detritus aggregations. Verhandlungen - Internationale Vereinigung für theoretische und angewandte Limnologie 26: 1016–1020.

    Google Scholar 

  • Gerino, M., R. C. Aller, C. Lee, J. K. Cochran, J. Y. Aller, M. A. Green & D. Hirschberg, 1998. Comparison of different tracers and methods used to quantify bioturbation during a spring bloom: 234-Thorium, luminophores and Chlorophyll a. Estuarine, Coastal and Shelf Science 46: 531–547.

    Article  Google Scholar 

  • Gilbert, F., S. Hulth, N. Strömberg, K. Ringdahl & J.-C. Poggiale, 2003. 2-D optical quantification of particle reworking activities in surface marine sediments. Journal of Experimental Marine Biology and Ecology 285(286): 251–263.

    Article  Google Scholar 

  • Gilbert, F., S. Hulth, V. Grossi, J.-C. Poggiale, G. Desrosiers, R. Rosenberg, M. Gérino, F. François-Carcaillet, E. Michaud & G. Stora, 2007. Sediment reworking by marine benthic species from the Gullmar Fjord (Western Sweden): importance of faunal biovolume. Journal of Experimental Marine Biology and Ecology 348: 133–144.

    Article  Google Scholar 

  • Hollertz, K. & J. C. Duchene, 2001. Burrowing behaviour and sediment reworking in the heart urchin Brissopsis lyrifera Forbes (Spatangoida). Marine Biology 139: 951–957.

    Article  Google Scholar 

  • Huryn, A. D. & J. B. Wallace, 1987. Local morphology as a determinant of macrofaunal production in a mountain stream. Ecology 68: 1932–1942.

    Article  Google Scholar 

  • Kristensen, E., G. Penha-Lopes, M. Delefosse, T. Valdemarsen, C. O. Quintana & G. T. Banta, 2012. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Marine Ecology Progress Series 446: 285–302.

    Article  Google Scholar 

  • Lagauzère, S., P. Boyer, G. Stora & J. M. Bonzom, 2009. Effects of uranium-contaminated sediments on the bioturbation activity of Chironomus riparius larvae (Insecta, Diptera) and Tubifex tubifex worms (Annelida, Tubificidae). Chemosphere 76: 324–334.

    Article  PubMed  Google Scholar 

  • Maire, O., J. C. Duchene, L. Bigot & A. Gremare, 2007. Linking feeding activity and sediment reworking in the deposit-feeding bivalve Abra ovata with image analysis, laser telemetry and luminophore tracers. Marine Ecology Progress Series 351: 139–150.

    Article  Google Scholar 

  • Maire, O., P. Lecroart, F. J. R. Meysman, R. Rosenberg, J. C. Duchene & A. Gremare, 2008. Methods of sediment reworking assessment in bioturbation research: a review. Aquatic Biology 2: 219–238.

    Article  Google Scholar 

  • Marmonier, P., G. Archambaud, N. Belaidi, N. Bougon, P. Breil, E. Chauvet, C. Claret, J. Cornut, T. Datry, M.-J. Dole-Olivier, B. Dumont, N. Flipo, A. Foulquier, M. Gérino, A. Guilpart, F. Julien, C. Maazouzi, D. Martin, F. Mermillod-Blondin, B. Montuelle, P. Namour, S. Navel, D. Ombredane, T. Pelte, C. Piscart, M. Pusch, S. Stroffek, A. Robertson, J.-M. Sanchez-Pérez, S. Sauvage, A. Taleb, M. Wantzen & P. Vervier, 2012. The role of organisms in hyporheic processes: gaps in current knowledge, needs for future research and applications. Annales de Limnologie – International Journal of Limnology. 48: 253–266.

    Article  Google Scholar 

  • Mazik, K. & M. Elliott, 2000. The effects of chemical pollution on the bioturbation potential of estuarine intertidal mudflats. Helgoland Marine Research 54: 99–109.

    Article  Google Scholar 

  • Mermillod-Blondin, F. & R. Rosenberg, 2006. Ecosystem engineering: the impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquatic Sciences 68: 434–442.

    Article  CAS  Google Scholar 

  • Mermillod-Blondin, F., R. Rosenberg, F. François-Carcaillet, K. Norling & L. Mauclaire, 2004. Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquatic Microbial Ecology 36: 271–284.

    Article  Google Scholar 

  • Moore, J. W., 2006. Animal ecosystem engineers in streams. BioScience 56: 237–246.

    Article  Google Scholar 

  • Mulsow, S., P. F. Landrum & J. A. Robbins, 2002. Biological mixing responses to sublethal concentrations of DDT in sediments by Heteromastus filiformis using a 137Cs marker layer technique. Marine Ecology Progress Series 239: 181–191.

    Article  CAS  Google Scholar 

  • Navel, S., F. Mermillod-Blondin, B. Montuelle, E. Chauvet & P. Marmonier, 2012. Sedimentary context controls the influence of ecosystem engineering by bioturbators on microbial processes in river sediments. Oikos 121: 1134–1144.

    Article  Google Scholar 

  • Palmer, M. A. & C. A. Febria, 2012. The heartbeat of ecosystems. Science 336: 1393–1394.

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team, 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Robert, K. & S. K. Juniper, 2012. Surface-sediment bioturbation quantified with cameras on the NEPTUNE Canada cabled observatory. Marine Ecology Progress Series 453: 137–149.

    Article  Google Scholar 

  • Sanpera-Calbet, I., E. Chauvet & J. Richardson, 2012. Fine sediment on leaves: shredder removal of sediment does not enhance fungal colonisation. Aquatic Sciences 74: 527–538.

    Article  CAS  Google Scholar 

  • Schmidt, S., J. M. Jouanneau, O. Weber, P. Lecroart, O. Radakovitch, F. Gilbert & D. Jezequel, 2007. Sedimentary processes in the Thau Lagoon (South France): from seasonal to century time scales. Estuarine, Coastal and Shelf Science 72: 534–542.

    Article  Google Scholar 

  • Solan, M., B. D. Wigham, I. R. Hudson, R. Kennedy, C. H. Coulon, K. Norling, H. C. Nilsson & R. Rosenberg, 2004. In situ quantification of bioturbation using time-lapse fluorescent sediment profile imaging (f-SPI), luminophore tracers and model simulation. Marine Ecology Progress Series 271: 1–12.

    Article  Google Scholar 

  • Statzner, B., 2012. Geomorphological implications of engineering bed sediments by lotic animals. Geomorphology 157: 49–65.

    Article  Google Scholar 

  • Sun, M.-Y., R. C. Aller & C. Lee, 1991. Early diagenesis of chlorophyll-a in Long Island Sound sediments: a measure of carbon flux and particle reworking. Journal of Marine Research 49: 379–401.

    Article  CAS  Google Scholar 

  • Zanetell, B. A. & B. L. Peckarsky, 1996. Stoneflies as ecological engineers—hungry predators reduce fine sediments in stream beds. Freshwater Biology 36: 569–577.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful for the help provided by Séverine Jean during fish field experiment. Thanks are also due to the associate editor and anonymous reviewers for their insightful comments which improved the manuscript. This work was supported by the Conseil Régional Midi-Pyrénées in the frame of the Action Interrégionale Aquitaine & Midi-Pyrénées “GAGILAU”, by the French ANR programme “ADAPT’EAU” (project ANR-11-CEPL-008), and by the “Biodiversity and Forest Management” programme (project SYLECOL) funded by the French Ministry of Environment. This paper is the Nereis Park contribution number #34.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Gilbert.

Additional information

Handling editor: Nuria Bonada

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Nadaï-Monoury, E., Lecerf, A., Canal, J. et al. A cost-effective method to quantify biological surface sediment reworking. Hydrobiologia 713, 115–125 (2013). https://doi.org/10.1007/s10750-013-1497-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1497-6

Keywords

Navigation