Advertisement

Hydrobiologia

, Volume 709, Issue 1, pp 227–235 | Cite as

Trophic ecology of a freshwater sponge (Spongilla lacustris) revealed by stable isotope analysis

  • James Skelton
  • Mac Strand
Primary Research Paper

Abstract

The vital roles that sponges play in marine habitats are well-known. However, sponges inhabiting freshwaters have been largely ignored despite having widespread distributions and often high local abundances. We used natural abundance stable isotope signatures of carbon and nitrogen (δ 13C and δ 15N) to infer the primary food source of the cosmopolitan freshwater sponge Spongilla lacustris. Our results suggest that S. lacustris feed largely on pelagic resources and may therefore link pelagic and benthic food webs. A facultative association between S. lacustris and endosymbiotic green algae caused S. lacustris to have significantly depleted carbon and nitrogen signatures that may reflect carbon and nitrogen exchange between sponges and their symbiotic algae. Isotopic data from specialist sponge consumers demonstrated that sponges hosting zoochlorellae were the major component of the diet of the spongillafly Climacia areolaris and the sponge-eating caddisfly Ceraclea resurgens suggesting that the symbiosis between freshwater sponges and algae is important to sponge predator trophic ecology. Our results help define the role of sponges in freshwater ecosystems and shed new light on the evolution and ecological consequences of a complex tri-trophic symbiosis involving freshwater sponges, zoochlorellae, and spongivorous insects.

Keywords

Food webs Energy flow Symbiosis Zoochlorellae Sisyridae Ceraclea Sponge predators 

Notes

Acknowledgments

Our sincerest thanks to Alec R. Lindsay and Alan J. Rebertus for their advice during the planning and execution of this project, to Kalin Wise and Steve Connolly for help in the field and laboratory and to Thomas D. Getman for providing vital laboratory equipment. Previous drafts of this manuscript were greatly improved by thoughtful comments from Bryan L. Brown, Robert P. Creed, and two anonymous reviewers. All isotope mass spectrometry was conducted by the staff at the Alaska Stable Isotope Facility at the University of Alaska Fairbanks. This study was funded by the Charles C. Spooner Research Fund and the Northern Michigan University Excellence in Education Research Program.

References

  1. Bailey, R. C., K. E. Day, R. H. Norris & T. B. Reynoldson, 1995. Macroinvertebrate community structure and sediment bioassay results from nearshore areas of North American Great Lakes. Journal of Great Lakes Research 21: 42–52.CrossRefGoogle Scholar
  2. Becerro, M. A., 2003. Can a sponge feeder be a herbivore? Tylodina perversa (Gastropoda) feeding on Aplysina aerophoba (Demospongiae). Biological Journal of the Linnean Society 78: 429–438.CrossRefGoogle Scholar
  3. Becerro, M. A., 2008. Quantitative trends in sponge ecology research. Marine Ecology (Berlin, West) 29: 167–177.CrossRefGoogle Scholar
  4. Brown, H. P., 1952. The life history of Climacia areolaris (Hagen), a neuropterous ‘parasite’ of fresh water sponges. American Midland Naturalist 47: 130–160.CrossRefGoogle Scholar
  5. Cabana, G. & J. B. Rasmussen, 1996. Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of Sciences of the United States of America 93: 10844–10847.PubMedCrossRefGoogle Scholar
  6. Corallini, C. & E. Gaino, 2001. Peculiar digestion patterns of sponge-associated zoochlorellae in the caddisfly Ceraclea fulva. Tissue & Cell 33: 402–407.CrossRefGoogle Scholar
  7. Diaz, C. M. & K. Rützler, 2001. Sponges: an essential component of Caribbean coral reefs. Bulletin of Marine Science 69: 535.Google Scholar
  8. France, R. L., 1995. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnology and Oceanography 40: 1310–1313.CrossRefGoogle Scholar
  9. Frost, T., 1997. A yellow-green algal symbiont in the freshwater sponge, Corvomeyenia everetti: convergent evolution of symbiotic associations. Freshwater Biology 38: 395–399.CrossRefGoogle Scholar
  10. Frost, T. M., 1980. Clearance rate determinations for the fresh-water sponge Spongilla lacustris: effects of temperature, particle type and concentration, and sponge size. Archiv Fur Hydrobiologie 90: 330–356.Google Scholar
  11. Frost, T. M., 1981. Analysis of ingested particles within a fresh-water sponge. Transactions of the American Microscopical Society 100: 271–277.CrossRefGoogle Scholar
  12. Frost, T. M. & C. E. Williamson, 1980. In situ determination of the effects of symbiotic algae on the growth of the fresh-water sponge Spongilla lacustris. Ecology 61: 1361–1370.CrossRefGoogle Scholar
  13. Frost, T. M., G. S. Denagy & J. J. Gilbert, 1982. Population dynamics and standing biomass of the fresh-water sponge Spongilla lacustris. Ecology 63: 1203–1210.CrossRefGoogle Scholar
  14. Frost, T. M., & J. E. Elias, 1985. The balance of autotrophy and heterotrophy in three freshwater sponges with algal symbionts. New perspectives in sponge biology. Smithsonian Institution, 478–484.Google Scholar
  15. Fry, B., 2006. Stable Isotope Ecology. Springer, New York.CrossRefGoogle Scholar
  16. Gaino, E., T. Lancioni, G. La Porta & B. Todini, 2004. The consortium of the sponge Ephydatia fluviatilis (L.) living on the common reed Phragmites australis in Lake Piediluco (central Italy). Hydrobiologia 520: 165–178.CrossRefGoogle Scholar
  17. Hargrave, B. T., 1970. The utilization of benthic microflora by Hyalella azteca (Amphipoda). The Journal of Animal Ecology 39: 427–437.CrossRefGoogle Scholar
  18. Jewell, M. E., 1936. An ecological study of the fresh-water sponges of northeastern Wisconsin. Ecological Monographs 5: 461–504.CrossRefGoogle Scholar
  19. Lesser, M. P., 2006. Benthic-pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. Journal of Experimental Marine Biology and Ecology 328: 277–288.CrossRefGoogle Scholar
  20. Mann, K. H., R. H. Britton, A. Kowalczewski, T. J. Lack, C. P. Mathews & I. McDonald, 1972. Productivity and energy flow at all trophic levels in the River Thames, England. In Kajak, Z. & A. Hillbrich-Ilkowska (eds), Productivity Problems of Freshwaters. Polish Scientific Publishers, Warsaw: 579–596.Google Scholar
  21. Matteson, J. D. & G. Z. Jacobi, 1980. Benhic macroinvertebrates found on the fresh-water sponge Spongilla lacustris. Great Lakes Entomologist 13: 169–172.Google Scholar
  22. Minigawa, M. & E. Wada, 1984. Stepwise enrichment of 15 N along food chains: further evidence in the relation between 15 N and animal age. Geochimica et Cosmochima Acta 48: 1135–1140.CrossRefGoogle Scholar
  23. Muscatine, L., J. W. Porter & I. R. Kaplan, 1989. Resource partitioning by reef corals as determined from stable isotope composition. Marine Biology 100: 185–193.CrossRefGoogle Scholar
  24. Parfenova, V. V., I. A. Terkina, T. Y. Kostornova, I. G. Nikulina, V. I. Chernykh & E. A. Maksimova, 2008. Microbial community of freshwater sponges in Lake Baikal. Biology Bulletin 35: 374–379.CrossRefGoogle Scholar
  25. Peterson, B. J. & B. Fry, 1987. Stable Isotopes in Ecosystem Studies. Annual Review of Ecology and Systematics 18: 293–320.CrossRefGoogle Scholar
  26. Pile, A. J., 2006. The natural diet of a hexactinellid sponge: benthic-pelagic coupling in a deep-sea microbial food web. Deep-sea Research Part A 53: 1148–1156.CrossRefGoogle Scholar
  27. Pile, A. J., M. R. Patterson, M. Savarese, V. I. Chernykh & V. A. Fialkov, 1997. Trophic effects of sponge feeding within Lake Baikal’s littoral zone. 2. Sponge abundance, diet, feeding efficiency, and carbon flux. Limnology and Oceanography 42: 178–184.CrossRefGoogle Scholar
  28. Pile, A. J., A. Grant, R. Hinde & M. A. Borowitzka, 2003. Heterotrophy on ultraplankton communities is an important source of nitrogen for a sponge-rhodophyte symbiosis. Journal of Experimental Biology 206: 4533–4538.PubMedCrossRefGoogle Scholar
  29. Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.CrossRefGoogle Scholar
  30. Reiswig, H. M., 1971. Particle feeding in natural populations of three marine demosponges. Biological Bulletin 141: 568.Google Scholar
  31. Reiswig, H. M., T. M. Frost & A. Ricciardi, 2010. Porifera. In Thorp, J. H. & A. P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates, 3rd ed. Academic Press, London: 91–123.CrossRefGoogle Scholar
  32. Resh, V. H., 1976a. Biology and immature stages of the caddisfly genus Ceraclea in eastern North America (Trichoptera: Leptoceridae). Annals of the Entomological Society of America 69: 1039–1061.Google Scholar
  33. Resh, V. H., 1976b. Life histories of coexisting species of Ceraclea caddisflies (Trichoptera: Leptoceridae). Canadian Entomologist 108: 1303–1318.CrossRefGoogle Scholar
  34. Roback, S. S., 1968. Insects associated with the sponge Spongilla fragilis in the Savannah River. Notulae Naturae 412: 1–10.Google Scholar
  35. Roque, F. D. O., 2004. Species of Oukuriella Epler (Diptera, Chironomidae) inside freshwater sponges in Brazil. Revista brasileira de entomologia 48: 291–292.CrossRefGoogle Scholar
  36. Rützler, K., 2004. Sponges on coral reefs: a community shaped by competitive cooperation. Bollettino dei Musei e degli Istituti Biologici dell’Universita` di Genova 68: 85–148.Google Scholar
  37. Sata, N. U., M. Kaneniwa, Y. Masuda, Y. Ando & H. Iida, 2002. Fatty acid composition of two species of Japanese freshwater sponges Heterorotula multidentata and Spongilla alba. Fisheries Science 68: 236–238.CrossRefGoogle Scholar
  38. Vander Zanden, M. J. & J. B. Rasmussen, 1999. Primary consumer delta C-13 and delta N-15 and the trophic position of aquatic consumers. Ecology 80: 1395–1404.CrossRefGoogle Scholar
  39. Vander Zanden, M. J. & J. B. Rasmussen, 2001. Variation in delta 15N and delta 13C Trophic Fractionation: implications for Aquatic Food Web Studies. Limnology and Oceanography 46: 2061–2066.CrossRefGoogle Scholar
  40. Williamson, C. E., 1979. Ultrastructural investigation of the algal symbiosis in white and green Spongilla lacustris (L) (Porifera, Spongillidae). Transactions of the American Microscopical Society 98: 59–77.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of BiologyNorthern Michigan UniversityMarquetteUSA
  2. 2.Department of Biological ScienceVirginia Tech UniversityBlacksburgUSA

Personalised recommendations