, Volume 709, Issue 1, pp 201–212 | Cite as

Silicon controls microbial decay and nutrient release of grass litter during aquatic decomposition

Primary Research Paper


The decomposition rate of plant litter is important for the carbon cycle. Element stoichiometry and hardly degradable carbon compounds are main factors controlling the decomposition rate of plant litter. Recent research has linked these factors to silicon availability during plant growth, but no research focused on the effect of silicon on litter decomposition. We therefore conducted a batch experiment to assess the effect of silicon availability to plants on litter degradation, nutrient release and multi elemental stoichiometry. Experiments were conducted in the presence or absence of invertebrate shredders (Gammarus pulex). We show that nutrient content (affected by silicon availability during plant growth) has a strong impact on nutrient turnover, while DOC, N, and Mn were mainly controlled by invertebrate feeding. The carbon turnover during microbial litter decay was strongly influenced by the silicon availability during plant growth, with quicker potential C turnover of litter with higher silicon content. In both Si-rich and Si-poor litter, feeding by invertebrate shredders positively impacted turnover rates, but effects were less pronounced in Si-rich litter. It can be concluded that silicon availability in wetlands dominated by reed plays an important role in carbon sequestration, nutrient cycling, and remobilization during aquatic litter decay.


Carbon cycle Nutrient remobilization Silica Stoichiometry Wetland 



The authors are grateful to Mr. T. Pust for laboratory and field assistance, Mrs. R. Schulze at the Institute of Bioanalytical Chemistry, Dresden University of Technology, for ICP-OES measurements and Mr. A. Weiske for all other measurements. Eric Struyf would like to thank FWO (Research Foundation Flanders) for personal post-doc funding. Furthermore, Eric Struyf acknowledges BELSPO for funding IAP project SOGLO.


  1. Aerts, R., 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79(3): 439–449.CrossRefGoogle Scholar
  2. Aerts, R. & H. deCaluwe, 1997. Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology 78(1): 244–260.Google Scholar
  3. Amon, R. M. W. & R. Benner, 1996. Bacterial utilization of different size classes of dissolved organic matter. Limnology & Oceanography 41(1): 41–51.CrossRefGoogle Scholar
  4. Bärlocher, F. & M. A. S. Graça, 2005. Total Phenolics. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), Methods to study litter decomposition: a practical guide. Springer, Berlin: 97–100.CrossRefGoogle Scholar
  5. Berg, B. & C. McClaugherty, 2003. Plant Litter. Springer, Berlin.CrossRefGoogle Scholar
  6. Dietrich, D., S. Hinke, W. Baumann, R. Fehlhaber, E. Baucher, G. Ruhle, O. Wienhaus & G. Marx, 2003. Silica accumulation in Triticum aestivum L. and Dactylis glomerata L. Analytical and Bioanalytical Chemistry 376(3): 399–404.PubMedGoogle Scholar
  7. DIN-EN-1484, 1997. Anleitung zur Bestimmung des gesamten organischen Kohlenstoffs (TOC) und des gelösten organischen Kohlenstoffs. Deutsches Institut für Normung, Berlin, 14.Google Scholar
  8. DIN-EN-13805, 2002. Lebensmittel – Bestimmung von Elementspuren – Druckaufschluss, Deutsche Fassung. Deutsches Institut für Normung, Berlin, 11.Google Scholar
  9. DIN-EN-ISO-17294-2, 2004. Wasserbeschaffenheit – Anwendung der induktiv gekoppelten Plasma-Massenspektrometrie (ICP-MS) – Teil 2: Bestimmung von 62 Elementen (ISO 17294-2:2003), Deutsche Fassung EN ISO 17294-2:2004. Deutsches Institut für Normung, Berlin, 24.Google Scholar
  10. DIN-ISO-10694, 1995. Soil quality – Determination of organic and total carbon after dry combustion (elementary analysis) (ISO 10694:1995). Deutsches Institut für Normung, Berlin, 12.Google Scholar
  11. Epstein, E., 2009. Silicon: its manifold roles in plants. Annals of Applied Biology 155(2): 155–160.CrossRefGoogle Scholar
  12. Fauteux, F., W. Remus-Borel, J. G. Menzies & R. R. Belanger, 2005. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letters 249(1): 1–6.PubMedCrossRefGoogle Scholar
  13. Fraysse, F., O. S. Pokrovsky, J. Schott & J. D. Meunier, 2009. Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chemical Geology 258(3–4): 197–206.CrossRefGoogle Scholar
  14. Frost, P. C. & N. C. Tuchman, 2005. Nutrient release rates and ratios by two stream detritivores fed leaf litter grown under elevated atmospheric CO2. Archiv für Hydrobiologie 163(4): 463–477.CrossRefGoogle Scholar
  15. Gessner, M. O. & E. Chauvet, 1994. Importance of stream microfungi in controlling breakdown rates of leaf-litter. Ecology 75(6): 1807–1817.CrossRefGoogle Scholar
  16. Gessner, M. O., E. Chauvet & M. Dobson, 1999. A perspective on leaf litter breakdown in streams. Oikos 85(2): 377–384.CrossRefGoogle Scholar
  17. Gessner, M. O., B. Schieferstein, U. Müller, S. Barkmann & U. A. Lenfers, 1996. A partial budget of primary organic carbon flows in the littoral zone of a hardwater lake. Aquatic Botany 55(2): 93–105.CrossRefGoogle Scholar
  18. Gessner, M. O., C. M. Swan, C. K. Dang, B. G. McKie, R. D. Bardgett, D. H. Wall & S. Hattenschwiler, 2010. Diversity meets decomposition. Trends in Ecology & Evolution 25(6): 372–380.CrossRefGoogle Scholar
  19. Graça, M. A. S., 2001. The role of invertebrates on leaf litter decomposition in streams – A review. International Review of Hydrobiology 86(4–5): 383–393.CrossRefGoogle Scholar
  20. Güsewell, S. & M. O. Gessner, 2009. N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Functional Ecology 23(1): 211–219.CrossRefGoogle Scholar
  21. Han, M. Y., L. X. Zhang, C. H. Fan, L. H. Liu, L. S. Zhang, B. Z. Li & A. K. Alva, 2011. Release of nitrogen, phosphorus, and potassium during the decomposition of apple (Malus domestica) leaf litter under different fertilization regimes in Loess Plateau. China. Soil Science and Plant Nutrition 57(4): 549–557.CrossRefGoogle Scholar
  22. Helmisaari, H. S., 1995. Nutrient cycling in Pinus-sylvestris stands in eastern Finland. Plant Soil 168: 327–336.CrossRefGoogle Scholar
  23. Hieber, M. & M. O. Gessner, 2002. Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83(4): 1026–1038.CrossRefGoogle Scholar
  24. Hietz, P., 1992. Decomposition and nutrient dynamics of reed (Phragmites australis (Cav) Trin ex Steud) litter in lake Neusiedl. Austria. Aquatic Botany 43(3): 211–230.CrossRefGoogle Scholar
  25. Hladyz, S., M. O. Gessner, P. S. Giller, J. Pozo & G. Woodward, 2009. Resource quality and stoichiometric constraints on stream ecosystem functioning. Freshwater Biology 54(5): 957–970.CrossRefGoogle Scholar
  26. Holstein, J. M. & C. Hensen, 2010. Microbial mediation of benthic biogenic silica dissolution. Geo-Marine Letters 30(5): 477–492.CrossRefGoogle Scholar
  27. Knowles, R., 1982. Denitrification. Microbiol Rev 46(1): 43–70.PubMedGoogle Scholar
  28. Kominkova, D., K. A. Kuehn, N. Busing, D. Steiner & M. O. Gessner, 2000. Microbial biomass, growth, and respiration associated with submerged litter of Phragmites australis decomposing in a littoral reed stand of a large lake. Aquatic Microbial Ecology 22(3): 271–282.CrossRefGoogle Scholar
  29. Lucas, Y., 2001. The role of plants in controlling rates and products of weathering: importance of biological pumping. Annual Review of Earth and Planetary Sciences 29: 135–163.CrossRefGoogle Scholar
  30. Massey, F. P. & S. E. Hartley, 2009. Physical defences wear you down: progressive and irreversible impacts of silica on insect herbivores. Journal of Animal Ecology 78(1): 281–291.PubMedCrossRefGoogle Scholar
  31. McClaugherty, C. & B. Berg, 1987. Cellulose, lignin and nitrogen concentrations as rate regulating factors in late stages of forest litter decomposition. Pedobiologia 30(2): 101–112.Google Scholar
  32. Redfield, A. C., 1958. The biological control of chemical factors in the environment. American Scientist 46(3): 205–221.Google Scholar
  33. Rimer, J. D., R. F. Lobo & D. G. Vlachos, 2005. Physical basis for the formation and stability of silica nanoparticles in basic solutions of monovalent cations. Langmuir 21(19): 8960–8971.PubMedCrossRefGoogle Scholar
  34. Schaller, J., A. Weiske, M. Mkandawire & E. G. Dudel, 2010. Invertebrates control metals and arsenic sequestration as ecosystem engineers. Chemosphere 79(2): 169–173.PubMedCrossRefGoogle Scholar
  35. Schaller, J., C. Brackhage, M. Mkandawire & G. Dudel, 2011. Metal/metalloid accumulation/remobilization during aquatic litter decomposition in freshwater: a review. Science of the Total Environment 409(23): 4891–4898.PubMedCrossRefGoogle Scholar
  36. Schaller, J., C. Brackhage & E. Dudel, 2012a. Silicon availability changes structural carbon ratio and phenol content of grasses. Environmental and Experimental Botany 77(3): 283–287.CrossRefGoogle Scholar
  37. Schaller, J., C. Brackhage, M. O. Gessner, E. Bäuker & E. Gert Dudel, 2012b. Silicon supply modifies C:N:P stoichiometry and growth of Phragmites australis. Plant Biology 14: 392–396.PubMedCrossRefGoogle Scholar
  38. Schaller, J., C. Brackhage, S. Paasch, E. Brunner, E. Bäucker & E. G. Dudel, 2013. Silica uptake from nanoparticles and silica condensation state in different tissues of Phragmites australis. Science of the Total Environment 442: 6–9.PubMedCrossRefGoogle Scholar
  39. Smith, V. H., 2002. Effects of resource supplies on the structure and function of microbial communities. Antonie Van Leeuwenhoek 81(1–4): 99–106.PubMedCrossRefGoogle Scholar
  40. Struyf, E. & D. J. Conley, 2009. Silica: an essential nutrient in wetland biogeochemistry. Frontiers in Ecology and the Environment 7(2): 88–94.CrossRefGoogle Scholar
  41. Struyf, E., S. Van Damme, B. Gribsholt, K. Bal, O. Beauchard, J. J. Middelburg & P. Meire, 2007. Phragmites australis and silica cycling in tidal wetlands. Aquatic Botany 87(2): 134–140.CrossRefGoogle Scholar
  42. Tessier, A., D. Fortin, N. Belzile, R. R. DeVitre & G. G. Leppard, 1996. Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: narrowing the gap between field and laboratory measurements. Geochimica et Cosmochimica Acta 60(3): 387–404.CrossRefGoogle Scholar
  43. Tiegs, S. D., F. D. Peter, C. T. Robinson, U. Uehlinger & M. O. Gessner, 2008. Leaf decomposition and invertebrate colonization responses to manipulated litter quantity in streams. Journal of the North American Benthological Society 27(2): 321–331.CrossRefGoogle Scholar
  44. Van Soest, P. J., 1963. Use of detergents in analysis of fibrous feeds. 2. A rapid method for determination of fiber and lignin. Journal of the Association of Official Agricultural Chemists 46(5): 829–835.Google Scholar
  45. Wainwright, M., K. AlWajeeh & S. J. Grayston, 1997. Effect of silicic acid and other silicon compounds on fungal growth in oligotrophic and nutrient-rich media. Mycological Research 101: 933–938.CrossRefGoogle Scholar
  46. Welton, J. S., 1979. Life-history and production of the amphipod Gammarus pulex in a Dorset chalk stream. Freshwater Biology 9: 263–275.CrossRefGoogle Scholar
  47. Whang, S. S., K. Kim & W. M. Hess, 1998. Variation of silica bodies in leaf epidermal long cells within and among seventeen species of Oryza (Poaceae). American Journal of Botany(4): 461–466.PubMedCrossRefGoogle Scholar
  48. Windham, L. & L. A. Meyerson, 2003. Effects of common reed (Phragmites australis) expansions on nitrogen dynamics of tidal marshes of the northeastern US. Estuaries 26(2B): 452–464.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of General Ecology and Environmental ProtectionTechnische Universität DresdenDresdenGermany
  2. 2.Department of Biology, Ecosystem Management Research GroupUniversity of AntwerpAntwerpBelgium

Personalised recommendations