, Volume 709, Issue 1, pp 55–72 | Cite as

The importance of sedimenting organic matter, relative to oxygen and temperature, in structuring lake profundal macroinvertebrate assemblages

  • Jussi Jyväsjärvi
  • Gergely Boros
  • Roger I. Jones
  • Heikki Hämäläinen
Primary Research Paper


We quantified the role of a main food resource, sedimenting organic matter (SOM), relative to oxygen (DO) and temperature (TEMP) in structuring profundal macroinvertebrate assemblages in boreal lakes. SOM from 26 basins of 11 Finnish lakes was analysed for quantity (sedimentation rates), quality (C:N:P stoichiometry) and origin (carbon stable isotopes, δ13C). Hypolimnetic oxygen and temperature were measured from each site during summer stratification. Partial canonical correspondence analysis (CCA) and partial regression analyses were used to quantify contributions of SOM, DO and TEMP to community composition and three macroinvertebrate metrics. The results suggested a major contribution of SOM in regulating the community composition and total biomass. Oxygen best explained the Shannon diversity, whereas TEMP had largest contribution to the variation of Benthic Quality Index. Community composition was most strongly related to δ13C of SOM. Based on additional δ13C and stoichiometric analyses of chironomid taxa, marked differences were apparent in their utilization of SOM and body stoichiometry; taxa characteristic of oligotrophic conditions exhibited higher C:N ratios and lower C:P and N:P ratios compared to the species typical of eutrophic lakes. The results highlight the role of SOM in regulating benthic communities and the distributions of individual species, particularly in oligotrophic systems.


Chironomid larvae Food quality Sediment trap Ecological stoichiometry Stable isotope analysis 



The authors are grateful to following people for their assistance in the field or laboratory: Tuula Sinisalo, Helena Jäntti, Virve Kustula, Olli Nousiainen, Pertti Saaristo, Lauri Arvola, Kalevi Salonen, Mika Nieminen and Timo Ruokonen. Special thanks to Oulun Verkkopalloseura and Puijo Tennis Team for those tens of empty tennis ball tubes we needed. Financial support for this study was provided by the Maj and Tor Nessling Foundation, the VALUE Finnish Graduate School and the FUNCDYN program of the European Science Foundation.


  1. Andersen, F. O. & H. S. Jensen, 1992. Regeneration of inorganic phosphorus and nitrogen from decomposition of seston in a freshwater sediment. Hydrobiologia 228: 71–81.CrossRefGoogle Scholar
  2. Blais, J. M. & J. Kalff, 1995. The influence of lake morphometry on sediment focusing. Limnology and Oceanography 40: 582–588.CrossRefGoogle Scholar
  3. Bloesch, J., 2004. Sedimentation and lake sediment formation. In O’Sullivan, P. E. & C. S. Reynolds (eds), The Lakes Handbook. Limnology and Limnetic Ecology. Blackwell Publishing, Malden: 197–229.Google Scholar
  4. Bloesch, J. & N. M. Burns, 1980. A critical review of sedimentation trap technique. Schweizerische Zeitschrift für Hydrologie 42: 15–55.Google Scholar
  5. Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.CrossRefGoogle Scholar
  6. Brinkhurst, R. O., 1974. The Benthos of Lakes. Blackburn Press, Caldwell.Google Scholar
  7. Brodersen, K. P. & N. J. Anderson, 2002. Distribution of chironomids (Diptera) in low arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction. Freshwater Biology 47: 1137–1157.CrossRefGoogle Scholar
  8. Brodersen, K. P. & R. Quinlan, 2006. Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quaternary Science Reviews 25: 1995–2012.CrossRefGoogle Scholar
  9. Brooks, S. J., P. G. Langdon & O. Heiri, 2007. The Identification and Use of Palearctic Chironomidae Larvae in Palaeoecology. QRA Technical Guide No. 10. Quaternary Research Association, London.Google Scholar
  10. Brundin, L., 1951. The relation of O2-microstratification at the mud surface to the ecology of the profundal bottom fauna. Institute of Fresh-water Research, Drottningholm 32: 32–43.Google Scholar
  11. Cowell, B. C., C. J. Dawes, W. E. Gardiner & S. E. Scheda, 1987. The influence of whole lake aeration on the limnology of a hypereutrophic lake in central Florida. Hydrobiologia 148: 3–24.CrossRefGoogle Scholar
  12. Cranston, P., 1988. Allergens of non-biting midges (Diptera: Chironomidae): a systematic survey of chironomid haemoglobins. Medical and Veterinary Entomology 2: 117–127.PubMedCrossRefGoogle Scholar
  13. Dang, C. K., S. Harrison, M. M. Sturt, P. S. Giller & M. A. Jansen, 2009. Is the elemental composition of stream invertebrates a determinant of tolerance to organic pollution. Journal of the North American Benthological Society 28: 778–784.CrossRefGoogle Scholar
  14. Dinsmore, W. P., G. J. Scrimgeour & E. E. Prepas, 1999. Empirical relationships between profundal macroinvertebrate biomass and environmental variables in boreal lakes of Alberta, Canada. Freshwater Biology 41: 91–100.CrossRefGoogle Scholar
  15. Dodds, W. K. & E. B. Welch, 2000. Establishing nutrient criteria in streams. Journal of the North American Benthological Society 19: 186–196.CrossRefGoogle Scholar
  16. Dunstan, G. A., J. K. Volkman, S. M. Barrett, J.-M. Leroia & S. W. Jeffrey, 1993. Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry 35: 155–161.CrossRefGoogle Scholar
  17. Elser, J. J., 2006. Biological stoichiometry: a chemical bridge between ecosystem, ecology and evolutionary biology. American Naturalist 168: 25–35.CrossRefGoogle Scholar
  18. Elser, J. J., D. R. Dobberfuhl, N. A. MacKay & J. H. Schampel, 2006. Organism size, life history and N:P stoichiometry. BioScience 46: 674–684.CrossRefGoogle Scholar
  19. European Commission, 2000. Directive 2000/60/EC 2000 Establishing a Framework for Community Action in the Field of Water Policy. Official Journal of the European Communities L 327/1: 1–72.Google Scholar
  20. France, R. L., 1995. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Marine Ecology Progress Series 124: 307–312.CrossRefGoogle Scholar
  21. Fulthorpe, R. & J. Paloheimo, 1985. Hypolimnetic oxygen consumption in small lakes. Canadian Journal of Fisheries and Aquatic Sciences 42: 1493–1500.CrossRefGoogle Scholar
  22. Gálvez, J. A., F. X. Niell & L. Lucena, 1991. C:N:P ratio of settling seston in a eutrophic reservoir. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 24: 1390–1395.Google Scholar
  23. Garcia-Ruiz, R., G. Parra, F. Guerrero & J. Lucena, 2001. Sedimentation of phosphorus fractions and temporal variation in the C:P ratio in La Concepcion reservoir, southern Spain. New Zealand Journal of Marine and Freshwater Research 35: 711–723.CrossRefGoogle Scholar
  24. Goedkoop, W. & R. K. Johnson, 1996. Pelagic-benthic coupling: profundal benthic community response to spring diatom deposition in mesotrophic Lake Erken. Limnology and Oceanography 41: 636–647.CrossRefGoogle Scholar
  25. Goedkoop, W., L. Sonesten, H. Markensten & G. Ahlgren, 1998. Fatty acid biomarkers show dietary differences between dominant chironomid taxa in Lake Erken. Freshwater Biology 40: 135–143.CrossRefGoogle Scholar
  26. Graf, G., 1989. Benthic–pelagic coupling in a deep-sea benthic community. Nature 341: 437–439.CrossRefGoogle Scholar
  27. Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods of Seawater Analysis, 2nd ed. Verlag Chemie, Weinheim.Google Scholar
  28. Håkanson, L., 1976. A bottom sediment trap for recent sedimentary deposits. Limnology and Oceanography 21: 125–133.CrossRefGoogle Scholar
  29. Håkanson, L., 1981. A Manual of Lake Morphometry. Springer, Berlin.CrossRefGoogle Scholar
  30. Håkanson, L. & M. Jansson, 1983. Principles of Lake Sedimentology. Springer, Berlin.CrossRefGoogle Scholar
  31. Hill, M. O. & H. G. Gauch, 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.CrossRefGoogle Scholar
  32. Hilton, J., J. Lishman & P. Allen, 1986. The dominant processes of sediment distribution and focusing in a small, eutrophic, monomictic lake. Limnology and Oceanography 31: 125–133.CrossRefGoogle Scholar
  33. Hudson, J. J. & W. D. Taylor, 2005. Phosphorus sedimentation during stratification in two small lakes. Archiv für Hydrobiologie 162: 309–325.CrossRefGoogle Scholar
  34. Huisman, J. & F. J. Weissing, 1995. Competition for nutrients and light in a mixed water column: a theoretical analysis. American Naturalist 146: 536–564.CrossRefGoogle Scholar
  35. Hynynen, J., A. Palomäki, H. Veijola, J. J. Meriläinen, P. Bagge, P. Manninen, A. Ustinov & S. Bibiceanu, 1999. Planktonic and zoobenthic communities in an oligotrophic, boreal lake inhabited by an endemic and endangered seal population. Boreal Environment Research 4: 145–161.Google Scholar
  36. Int Panis, L., B. Goddeeris & R. F. Verheyen, 1995. The hemoglobin concentration of Chironomus cf. plumosus L. (Diptera: Chironomidae) larvae from two lentic habitats. Aquatic Ecology 29: 1–4.CrossRefGoogle Scholar
  37. Int Panis, L., B. Goddeeris & R. F. Verheyen, 1996. On the spatial distribution and respiratory environment of benthic macroinvertebrates in ponds. Hydrobiologia 319: 131–136.CrossRefGoogle Scholar
  38. Jackson, D. A., 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204–2214.CrossRefGoogle Scholar
  39. Jewell, W. J. & P. L. McCarty, 1971. Aerobic decomposition of algae. Environmental Science & Technology 5: 1023–1031.CrossRefGoogle Scholar
  40. Johnson, R. K., 1987. Seasonal variation in diet of Chironomus plumosus (L.) and C. anthracinus Zett. (Diptera: Chironomidae) in mesotrophic Lake Erken. Freshwater Biology 17: 525–532.CrossRefGoogle Scholar
  41. Johnson, R. K. & T. Wiederholm, 1989. Classification and ordination of profundal macroinvertebrate communities in nutrient poor, oligo-mesohumic lakes in relation to environmental data. Freshwater Biology 21: 375–386.CrossRefGoogle Scholar
  42. Johnson, R. K. & T. Wiederholm, 1992. Pelagic-benthic coupling – the importance of diatom interannual variability for population oscillations of Monoporeia affinis. Limnology and Oceanography 37: 1596–1607.CrossRefGoogle Scholar
  43. Johnson, R. K., B. Boström & W. van de Bund, 1989. Interactions between Chironomus plumosus (L.) and the microbial community in surficial sediments of a shallow, eutrophic lake. Limnology and Oceanography 34: 992–1003.CrossRefGoogle Scholar
  44. Jónasson, P. M., 2004. Benthic invertebrates. In O’Sullivan, P. E. & C. S. Reynolds (eds), The Lakes Handbook. Limnology and Limnetic Ecology. Blackwell Publishing, Malden: 341–416.Google Scholar
  45. Jones, R. I. & J. Grey, 2011. Biogenic methane in freshwater food webs. Freshwater Biology 56: 213–229.CrossRefGoogle Scholar
  46. Jones, R. I., C. E. Carter, A. Kelly, S. Ward, D. J. Kelly & J. Grey, 2008. Widespread contribution of methane cycle bacteria to the diets of lake profundal chironomid larvae. Ecology 89: 857–864.PubMedCrossRefGoogle Scholar
  47. Jyväsjärvi, J., K. T. Tolonen & H. Hämäläinen, 2009. Natural variation of profundal macroinvertebrate communities in boreal lakes is related to lake morphometry: implications for bioassessment. Canadian Journal of Fisheries and Aquatic Sciences 66: 589–601.CrossRefGoogle Scholar
  48. Jyväsjärvi, J., J. Nyblom & H. Hämäläinen, 2010. Palaeolimnological validation of estimated reference values for a lake profundal macroinvertebrate metric (benthic quality index). Journal of Paleolimnology 44: 253–264.CrossRefGoogle Scholar
  49. Jyväsjärvi, J., J. Aroviita & H. Hämäläinen, 2012. Performance of profundal macroinvertebrate assessment in boreal lakes depends on lake depth. Fundamental and Applied Limnology 180: 91–100.CrossRefGoogle Scholar
  50. Kamp-Nielsen, L. & B. T. Hargrave, 1978. Influence of bathymetry on sediment focusing in Lake Esrom. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 20: 714–719.Google Scholar
  51. Kansanen, P. H., J. Aho & L. Paasivirta, 1984. Testing the benthic lake type concept based on chironomid associations in some Finnish lakes using multivariate statistical methods. Annales Zoologici Fennici 21: 55–76.Google Scholar
  52. Kilham, S. S., 1990. Relationship of phytoplankton and nutrients to stoichiometric measures. In Tilzer, M. M. & C. Serruya (eds), Large Lakes: Ecological Structure and Function. Springer, Berlin: 403–414.CrossRefGoogle Scholar
  53. Lang, C. & P. Hutter, 1982. Structure, diversity and stability of two oligochaete communities according to sedimentary inputs in Lake Geneva (Switzerland). Aquatic Science 43: 265–276.CrossRefGoogle Scholar
  54. Legendre, P. & L. Legendre, 1998. Numerical Ecology, 2nd ed. Elsevier Science BV, Amsterdam.Google Scholar
  55. Levin, L. A. & J. D. Gage, 1998. Relationships between oxygen, organic matter and the diversity of bathyal macrofauna. Deep Sea Research Part II: Topical Studies in Oceanography 45: 129–163.CrossRefGoogle Scholar
  56. Likens, G. E. & M. B. Davis, 1975. Post-glacial history of Mirror Lake and its watershed in New Hampshire, U.S.A.: an initial report. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 19: 982–993.Google Scholar
  57. Lindegaard, C., 1994. The role of zoobenthos in energy flow in two shallow lakes. Hydrobiologia 275–276: 313–322.CrossRefGoogle Scholar
  58. Lopez, G. R. & J. S. Levinton, 1987. Ecology of deposit-feeding animals in marine sediments. Quarterly Review of Biology 62: 235–260.CrossRefGoogle Scholar
  59. Mackereth, F. J. H., J. Heron & J. F. Talling, 1978. Water analysis: some revised methods for limnologists. Scientific Publication No. 36. Freshwater Biological Association, UKGoogle Scholar
  60. Meyers, P. A. & J. L. Teranes, 2001. Sediment organic matter. In Last, W. M. & J. P. Smol (eds), Tracking Environmental Change Using Lake Sediments, Physical and Chemical Methods, Vol. 2. Kluwer Academic Publishers, Dordrecht: 239–269.CrossRefGoogle Scholar
  61. Molongoski, J. J. & M. J. Klug, 1980. Quantification and characterization of sedimenting particulate organic matter in a shallow hypereutrophic lake. Freshwater Biology 10: 497–506.CrossRefGoogle Scholar
  62. OECD, 1982. Eutrophication of Waters. Monitoring Assessment and Control. Final Report. OECD Cooperative Programme on Monitoring of Inland Waters (Eutrophication Control), Environment Directorate, OECD, Paris.Google Scholar
  63. Økland, R. H. & O. Eilertsen, 1994. Canonical correspondence analysis with variation partitioning: some comments and an application. Journal of Vegetation Science 5: 117–126.CrossRefGoogle Scholar
  64. Oksanen J., R. Kindt, P. Legendre, B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2008. vegan: Community Ecology Package. R package version 1.15-1.
  65. Ottosson, F. & O. Abrahamsson, 1998. Presentation and analysis of a model simulating epilimnetic and hypolimnetic temperatures in lakes. Ecological Modelling 110: 233–253.CrossRefGoogle Scholar
  66. Peters, R. H., 1983. Ecological Implications of Body Size. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  67. R Development Core Team, 2008. R: a language and environment for statistical computing. R Foundation for Statistical Computing.
  68. Rask, M., K.-M. Vuori, H. Hämäläinen, M. Järvinen, S. Hellsten, H. Mykrä, L. Arvola, J. Ruuhijärvi, J. Jyväsjärvi, I. Kolari, M. Olin, E. Salonen & P. Valkeajärvi, 2011. Ecological classification of large lakes in Finland: comparison of classification approaches using multiple quality elements. Hydrobiologia 660: 37–47.CrossRefGoogle Scholar
  69. Rasmussen, J. B. & J. Kalff, 1987. Empirical models for zoobenthic biomass in lakes. Canadian Journal of Fisheries and Aquatic Sciences 44: 990–1001.CrossRefGoogle Scholar
  70. Real, M. & N. Prat, 1992. Factors influencing the distribution of chironomids and oligochaetes in profundal areas of Spanish reservoirs. Aquatic Ecology 26: 405–410.CrossRefGoogle Scholar
  71. Real, M., M. Rieradevall & N. Prat, 2000. Chironomus species (Diptera: Chironomidae) in the profundal benthos of Spanish reservoirs and lakes: factors affecting distribution patterns. Freshwater Biology 43: 1–18.CrossRefGoogle Scholar
  72. Saether, O. A., 1979. Chironomid communities as water quality indicators. Holarctic Ecology 2: 65–74.Google Scholar
  73. Schielzeth, H., 2010. Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution 1: 103–113.CrossRefGoogle Scholar
  74. Schindler, D., 1974. Eutrophication and recovery in experimental lakes: implications for lake management. Science 184: 897–899.PubMedCrossRefGoogle Scholar
  75. SFS, 1989. Standard no: 5076. Sampling of the bottom fauna on soft bottoms with an Ekman grab. The Finnish Standards Association, Helsinki.Google Scholar
  76. Shannon, C. E. & W. Weaver, 1949. The Mathematical Theory of Communication. University of Illinois, Chicago.Google Scholar
  77. Simola, H. & L. Arvola, 2005. Lakes in northern Europe. In O’Sullivan, P. E. & C. S. Reynolds (eds), The Lakes Handbook. Lake Restoration and Rehabilitation. Blackwell Publishing, Malden: 117–158.Google Scholar
  78. Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.Google Scholar
  79. Strickland, J. D. H. & T. R. Parsons, 1972. A Practical Handbook of Seawater Analysis, 2nd ed. Fisheries Research Board of Canada, Ottawa.Google Scholar
  80. ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.CrossRefGoogle Scholar
  81. ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Advances in Ecological Research 4: 235–282.Google Scholar
  82. Thienemann, A., 1922. Die beiden Chironomusarten der Tiefenfauna der norddeutschen Seen. Ein hydrobiologisches Problem. Archiv für Hydrobiologie 13: 609–646.Google Scholar
  83. Tilman, D., 1982. Resource Competition and Community Structure. Princeton University Press, Princeton.Google Scholar
  84. Veefkind, R. J., 2003. Carbon isotope ratios and composition of fatty acids: Tags and trophic markers of pelagic organisms. PhD Thesis. University of Victoria.Google Scholar
  85. Verneaux, V., J. Verneaux, A. Schmitt & J. C. Lambert, 2004. Relationships of macrobenthos with dissolved oxygen and organic matter at the sediment-water interface in ten French lakes. Archiv für Hydrobiologie 160: 247–259.CrossRefGoogle Scholar
  86. Vollenweider, R. A., 1968. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. Technical Report. OECD.Google Scholar
  87. von Wachenfeldt, E. & L. J. Tranvik, 2008. Sedimentation in boreal lakes—the role of flocculation of allochthonous dissolved organic matter in the water column. Ecosystems 11: 803–814.CrossRefGoogle Scholar
  88. Vos, J. H., E. T. H. M. Peeters, R. Gylstra, M. H. S. Kraak & W. Admiraal, 2004. Nutritional value of sediments for macroinvertebrate communities in shallow eutrophic waters. Archiv für Hydrobiologie 161: 469–487.CrossRefGoogle Scholar
  89. Vuorio, K., M. Meili & J. Sarvala, 2006. Taxon-specific variation in the stable isotopic signatures (δ13C and δ15N) of lake phytoplankton. Freshwater Biology 51: 807–822.CrossRefGoogle Scholar
  90. Weber, R. E., 1980. Functions of invertebrate hemoglobins with special reference to adaptations to environmental hypoxia. American Zoologist 20: 79–101.Google Scholar
  91. Wetzel, R. G., 2001. Limnology. Lake and River Ecosystems, 3rd ed. Academic Press, London.Google Scholar
  92. Wiederholm, T., 1980. Use of benthos in lake monitoring. Journal of the Water Pollution Control Federation 52: 537–547.Google Scholar
  93. Wiederholm, T., 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part 1. Larvae. Entomologica Scandinavica Supplementum 19: 1–457.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Jussi Jyväsjärvi
    • 1
  • Gergely Boros
    • 2
  • Roger I. Jones
    • 1
  • Heikki Hämäläinen
    • 1
  1. 1.Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
  2. 2.Balaton Limnological Research Institute of the Hungarian Academy of SciencesTihanyHungary

Personalised recommendations