, Volume 735, Issue 1, pp 233–251 | Cite as

Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies

  • Ronaldo Sousa
  • Adriana Novais
  • Raquel Costa
  • David L. Strayer


Invasive bivalves may cause great ecological, evolutionary, and economic impacts in freshwater ecosystems. Species such as Corbicula fluminea, Dreissena bugensis, Dreissena polymorpha, Limnoperna fortunei, and Sinanodonta woodiana are widely distributed hyper-successful invaders, but several others not yet invasive (or at least not considered as such) may become so in the near future. These species can affect hydrology, biogeochemical cycling, and biotic interactions through several mechanisms, with impacts ranging from individuals to ecosystems. Freshwater invasive bivalves can create no-analog ecosystems, posing serious difficulties for management, but new techniques are becoming available which may enhance options to detect early introductions and mitigate impacts. Although knowledge about the biology of these bivalves has increased considerably in the last two decades, several fundamental gaps still persist; we suggest new research directions that are worth exploring in the near future.


Bivalves Corbicula fluminea Dreissena Impacts Invasive species Limnoperna fortunei Sinanodonta woodiana 



This study was conducted in the scope of the project “ECO-IAS”, funded by the Portuguese Foundation for the Science and the Technology and COMPETE funds (Contract: PTDC/AAC-AMB/116685/2010).


  1. Aldridge, D. C., P. Elliot & G. D. Moggridge, 2004. The recent and rapid spread of the zebra mussel (Dreissena polymorpha) in Great Britain. Biological Conservation 119: 253–261.Google Scholar
  2. Aldridge, D. C., P. Elliott & G. D. Moggridge, 2006. Microencapsulated BioBullets for the control of biofouling zebra mussels. Environmental Science and Technology 40: 975–979.PubMedGoogle Scholar
  3. Bastviken, D. T. E., N. F. Caraco & J. J. Cole, 1998. Experimental measurements of zebra mussel (Dreissena polymorpha) impacts on phytoplankton community composition. Freshwater Biology 39: 375–386.Google Scholar
  4. Benson, A., 2012. USGS Nonindigenous Aquatic Species Database, Gainesville, FL [available on internet at Accessed 31 May 2012].
  5. Bódis, E., B. Tóth & R. Sousa, 2013. Massive mortality of invasive bivalves as a potential resource subsidy for the adjacent terrestrial food web. Hydrobiologia (in press).Google Scholar
  6. Boltovskoy, D., N. Correa, D. Cataldo & F. Sylvester, 2006. Dispersion and ecological impact of the invasive freshwater bivalve Limnoperna fortunei in the Río de la Plata watershed and beyond. Biological Invasions 8: 947–963.Google Scholar
  7. Boltovskoy, D., A. Karatayev, L. Burlakova, D. Cataldo, V. Karatayev, F. Sylvester & A. Mariñelarena, 2009. Significant ecosystem-wide effects of the swiftly spreading invasive freshwater bivalve Limnoperna fortunei. Hydrobiologia 636: 271–284.Google Scholar
  8. Byers, J. E., 2002. Impact of non-indigenous species enhanced by anthropogenic alteration of selection regimes. Oikos 97: 449–458.Google Scholar
  9. Cantanhêde, G., N. S. Hahn, É. A. Gubiani & R. Fugi, 2008. Invasive molluscs in the diet of Pterodoras granulosus (Valenciennes, 1821) (Pisces, Doradidae) in the Upper Paraná River floodplain, Brazil. Ecology of Freshwater Fish 17: 47–53.Google Scholar
  10. Caraco, N. F., J. J. Cole, P. A. Raymond, D. L. Strayer, M. L. Pace, S. E. G. Findlay & D. T. Fischer, 1997. Zebra mussel invasion in a large, turbid river: phytoplankton response to increased grazing. Ecology 78: 588–602.Google Scholar
  11. Caraco, N. F., J. J. Cole & D. L. Strayer, 2006. Top down control from the bottom: regulation of eutrophication in a large river by benthic grazing. Limnology and Oceanography 51: 664–670.Google Scholar
  12. Carlsson, N. O. L., O. Sarnelle & D. L. Strayer, 2009. Native predators and exotic prey—an acquired taste? Frontiers in Ecology and the Environment 7: 525–532.Google Scholar
  13. Carlsson, N. O. L., H. Bustamante, D. L. Strayer & M. L. Pace, 2011. Biotic resistance on the increase: native predators structure invasive zebra mussel populations. Freshwater Biology 56: 1630–1637.Google Scholar
  14. Carlton, J. T., 1993. Dispersal mechanisms of the zebra mussel (Dreissena polymorpha). In Nalepa, T. F. & D. W. Schloesser (eds), Zebra Mussels: Biology, Impacts and Control. Lewis, Boca Raton: 677–697.Google Scholar
  15. Cherry, D. S., J. L. Scheller, N. L. Cooper & J. R. Bidwell, 2005. Potential effects of Asian clam (Corbicula fluminea) die-offs on native freshwater mussels (Unionidae) I: water-column ammonia levels and ammonia toxicity. Journal of the North American Benthological Society 24: 369–380.Google Scholar
  16. Clavero, M., R. Araújo, J. Calzada, M. Delibes, N. Fernández, C. Gutiérrez-Expósito, E. Revilla & J. Román, 2012. The first invasive bivalve in African freshwaters: invasion portrait and management options. Aquatic Conservation: Marine and Freshwater Ecosystems 22: 277–280.Google Scholar
  17. Clayton, J. L., C. W. Stihler & J. L. Wallace, 2001. Status and potential impacts to the freshwater bivalves (Unionidae) in Patterson Creek, West Virginia. Northeast Naturalist 8: 179–188.Google Scholar
  18. Cohen, A. N. & J. T. Carlton, 1998. Accelerating invasion rate in a highly invaded estuary. Science 279: 555–558.PubMedGoogle Scholar
  19. Connelly, N. A., C. R. O’Neill, B. A. Knuth & T. L. Brown, 2007. Economic impacts of zebra mussels on drinking water treatment and electric power generation facilities. Environmental Management 40: 105–112.PubMedGoogle Scholar
  20. Coon, G. T., H. W. Belcher, D. J. Harston & Y. Zai-Chun, 1993. Potential infestation of subirrigation systems in Saginaw Bay by zebra mussels and evaluation of control options. Presented at the 3rd International Zebra Mussel Conference, Toronto.Google Scholar
  21. Cooper, N. L., J. R. Bidwell & D. S. Cherry, 2005. Potential effects of Asian clam (Corbicula fluminea) die-offs on native freshwater mussels (Unionidae) II: pore-water ammonia. Journal of the North American Benthological Society 24: 381–394.Google Scholar
  22. Costa, R., D. Aldridge & G. D. Moggridge, 2011. Preparation and evaluation of biocide-loaded particles to control the biofouling zebra mussel, Dreissena polymorpha. Chemical Engineering Research and Design 89: 2322–2329.Google Scholar
  23. Cox, G. W., 2004. Alien Species and Evolution. Island Press, Washington, DC.Google Scholar
  24. Darrigran, G., 2002. Potential impact of filter-feeding invaders on temperate inland freshwater environments. Biological Invasions 4: 145–156.Google Scholar
  25. Dawson, V. K., 2003. Environmental fate and effects of the lampricide Bayluscide: a review. Journal of Great Lakes Research 29: 475–492.Google Scholar
  26. Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.PubMedGoogle Scholar
  27. Duffy, J. E., 2009. Why biodiversity is important to the functioning of real-world ecosystems. Frontiers in Ecology and the Environment 7: 437–444.Google Scholar
  28. Durand-Hoffman, M. E., 1995. Analysis of physiological and toxicological effects of potassium on Dreissena polymorpha and toxicological effects on fish. MS thesis, Ohio State University, Columbus.Google Scholar
  29. Ehrenfeld, J. G., 2010. Ecosystem consequences of biological invasions. Annual Review of Ecology, Evolution, and Systematics 41: 59–80.Google Scholar
  30. Essl, F., S. Dullinger, W. Rabitsch, P. E. Hulme, K. Hülber, V. Jarošík, I. Kleinbauer, F. Krausmann, I. Kühn, W. Nentwig, M. Vilà, P. Genovesi, F. Gherardi, M.-L. Desprez-Loustau, A. Roques & P. Pyšek, 2011. Socioeconomic legacy yields an invasion debt. Proceedings of the National Academy of Sciences of the United States of America 108: 203–207.PubMedCentralPubMedGoogle Scholar
  31. Fernald, S. H., N. F. Caraco & J. J. Cole, 2007. Changes in cyanobacterial dominance following the invasion of the zebra mussel Dreissena polymorpha: long-term results from the Hudson River estuary. Estuaries and Coasts 30: 163–170.Google Scholar
  32. Ficetola, G. F., C. Miaud, F. Pompanon & P. Taberlet, 2008. Species detection using environmental DNA from water samples. Biology Letters 4: 423–425.PubMedCentralPubMedGoogle Scholar
  33. Finnoff, D., J. F. Shogren, B. Leung & D. Lodge, 2007. Take a risk: preferring prevention over control of biological invaders. Ecological Economics 62: 216–222.Google Scholar
  34. Fisher, S. W., P. Stromberg, K. A. Bruner & L. D. Boulet, 1991. Molluscicidal activity of potassium to the zebra mussel, Dreissena polymorpha—toxicity and mode of action. Aquatic Toxicology 20: 219–234.Google Scholar
  35. French, J. R. P. III., & M. T. Bur, 1993. Predation of the zebra mussel (Dreissena polymorpha) by freshwater drum in western Lake Erie. In Nalepa, T. F. & D. W. Schloesser (eds), Zebra Mussels: Biology, Impacts and Control. Lewis, Boca Raton: 453–464.Google Scholar
  36. Garcia, M. L. & L. C. Protogino, 2005. Invasive freshwater molluscs are consumed by native fishes in South America. Journal of Applied Ichthyology 21: 34–38.Google Scholar
  37. Haag, W. R., D. J. Berg, D. W. Garton & J. L. Farris, 1993. Reduced survival and fitness in native bivalves in response to fouling by the introduced zebra mussel (Dreissena polymorpha) in western Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 50: 13–19.Google Scholar
  38. Hamilton, D. J., C. D. Ankney & R. C. Bailey, 1994. Predation of zebra mussels by diving ducks: an enclosure approach. Ecology 75: 521–531.Google Scholar
  39. Higgins, S. N. & M. J. Vander Zanden, 2010. What a difference a species makes: a meta-analysis of dreissenid mussel impacts on freshwater ecosystems. Ecological Monographs 80: 179–196.Google Scholar
  40. Hulme, P. E., P. Pysek, W. Nentwig & M. Vilà, 2009. Will threat of biological invasions unite the European Union? Science 324: 40–41.PubMedGoogle Scholar
  41. Ilarri, M. & R. Sousa, 2012. Corbicula fluminea Müller (Asian clam). In Francis, R. A. (ed.), A Handbook of Global Freshwater Invasive Species. Earthscan, London: 173–183.Google Scholar
  42. Ilarri, M., C. Antunes, L. Guilhermino & R. Sousa, 2011. Massive mortality of the Asian clam Corbicula fluminea in a highly invaded area. Biological Invasions 13: 277–280.Google Scholar
  43. Ilarri, M., F. Freitas, S. Costa-Dias, C. Antunes, L. Guilhermino & R. Sousa, 2012. Associated macrozoobenthos with the invasive Asian clam Corbicula fluminea. Journal of Sea Research 72: 113–120.Google Scholar
  44. Isman, M. B., 2000. Plant essential oils for pest and disease management. Crop Protection 19: 603–608.Google Scholar
  45. Jerde, C. L., A. R. Mahon, W. L. Chadderton & D. M. Lodge, 2011. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conservation Letters 4: 150–157.Google Scholar
  46. Jones, C. G., J. H. Lawton & M. Shachak, 1994. Organisms as ecosystem engineers. Oikos 69: 373–386.Google Scholar
  47. Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 1997. The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in Eastern Europe. Journal of Shellfish Research 16: 187–203.Google Scholar
  48. Karatayev, A. Y., D. Boltovskoy, D. K. Padilla & L. E. Burlakova, 2007. The invasive bivalves Dreissena polymorpha and Limnoperna fortunei: parallels, contrasts, potential spread and invasion impacts. Journal of Shellfish Research 26: 205–213.Google Scholar
  49. Kat, P. W., 1986. Hybridization in a unionid faunal suture zone. Malacologia 27: 107–126.Google Scholar
  50. Keller, R. P., D. M. Lodge & D. C. Finnoff, 2007a. Risk assessment for invasive species produces net bioeconomic benefits. Proceedings of the National Academy of Sciences 104: 203–207.Google Scholar
  51. Keller, R. P., J. M. Drake & D. M. Lodge, 2007b. Fecundity as a basis for risk assessment of nonindigenous freshwater molluscs. Conservation Biology 21: 191–200.PubMedGoogle Scholar
  52. Kolar, C. S. & D. M. Lodge, 2002. Ecological predictions and risk assessment for alien fishes in North America. Science 298: 1233–1236.PubMedGoogle Scholar
  53. Lajtner, J. & P. Crnčan, 2011. Distribution of the invasive bivalve Sinanodonta woodiana (Lea, 1834) in Croatia. Aquatic Invasions 6: S119–S124.Google Scholar
  54. Lake George Asian Clam Rapid Response Task Force (LGACRRTF), 2012. Lake George Asian clam containment and eradication project: report on 2011 activities and 2012 plan [available on internet at Accessed 8 June 2012].
  55. Mackie, G. L. & R. Claudi, 2010. Monitoring and Control of Macrofouling Mollusks in Fresh Water Systems. CRC Press, Boca Raton.Google Scholar
  56. Mansur, M., C. dos Santos, D. Pereira, I. Paz, M. Zurita, M. Rodriguez, M. Nehrke & P. Bergonci, 2012. Moluscos límnicos invasores no Brasil: biologia, prevenção, controle. Redes Editora, Porto Alegre.Google Scholar
  57. Marrone Bio Innovations, 2012a. Zequanox®—Invasive mussel control [available on internet at Accessed 8 June 2012].
  58. Marrone Bio Innovations, 2012b. ZEQUANOX™—Environmentally friendly biological control of zebra and quagga mussels with Pseudomonas fluorescens strain CL145A [available on internet at Accessed 8 June 2012].
  59. McMahon, R. F., 1982. The occurrence and spread of the introduced Asiatic freshwater clam, Corbicula fluminea (Müller) in North America, 1924–1982. Nautilus 96: 134–141.Google Scholar
  60. McMahon, R. F., 2002. Evolutionary and physiological adaptations of aquatic invasive animals: r selection versus resistance. Canadian Journal of Fisheries and Aquatic Sciences 59: 1235–1244.Google Scholar
  61. Mills, E. L., J. H. Leach, J. T. Carlton & C. L. Secor, 1993. Exotic species in the Great Lakes: a history of biotic crises and anthropogenic introductions. Journal of Great Lakes Research 19: 1–54.Google Scholar
  62. Mills, E. L., G. Rosenberg, A. P. Spidle, M. Ludyanskiy, Y. Pligin & B. May, 1996. A review of the biology and ecology of the quagga mussel (Dreissena bugensis), a second species of freshwater Dreissenid introduced to North America. American Zoologist 36: 271–286.Google Scholar
  63. Mills, E. L., J. T. Carlton, M. D. Scheuerell & D. L. Strayer, 1997. Biological invasions in the Hudson River: an inventory and historical analysis. New York State Museum Circular 57: 1–51.Google Scholar
  64. Molloy, D. P., A. Y. Karatayev, L. E. Burlakova, D. P. Kurandina & F. Laruelle, 1997. Natural enemies of zebra mussels: predators, parasites and ecological competitors. Reviews in Fisheries Science 5: 27–97.Google Scholar
  65. Morrison, H. A., F. A. P. C. Gobas, R. Lazar, D. M. Whittle & G. D. Haffner, 1998. Projected changes to the trophodynamics of PCBs in the western Lake Erie ecosystem attributed to the presence of zebra mussels (Dreissena polymorpha). Environmental Science and Technology 32: 3862–3867.Google Scholar
  66. Mouthon, J., 1981. Sur la présence en France et au Portugal de Corbicula (Bivalvia, Corbiculidae) originaire d’Asie. Basteria 45: 109–116.Google Scholar
  67. Nalepa, T. F., D. L. Fanslow & G. A. Lang, 2009. Transformation of the offshore benthic community in Lake Michigan: recent shift from the native amphipod Diporeia spp. to the invasive mussel Dreissena rostriformis bugensis. Freshwater Biology 54: 466–479.Google Scholar
  68. Nichols, S. J. & D. A. Wilcox, 1997. Burrowing saves Lake Erie clams. Nature 389: 921.Google Scholar
  69. Ogawa, K., T. Nakatsugawa & I. M. Yasuzaki, 2004. Heavy metacercarial infections of cyprinid fishes in Uji River. Fisheries Science 70: 132–140.Google Scholar
  70. Pace, M. L., D. L. Strayer, D. T. Fischer & H. M. Malcom, 2010. Increased mortality of zebra mussels associated with recovery of zooplankton in the Hudson River. Ecosphere 1: art3.Google Scholar
  71. Paolucci, E. M., D. H. Cataldo, C. M. Fuentes & D. Boltovskoy, 2007. Larvae of the invasive species Limnoperna fortunei (Bivalvia) in the diet of fish larvae in the Paraná River, Argentina. Hydrobiologia 589: 219–233.Google Scholar
  72. Paolucci, E. M., E. V. Thuesen, D. H. Cataldo & D. Boltovskoy, 2010. Veligers of an introduced bivalve, Limnoperna fortunei, are a new food resource that enhances growth of larval fish in the Paraná River (South America). Freshwater Biology 55: 1831–1844.Google Scholar
  73. Pérez-Fuentetaja, A., M. D. Clapsadl, D. Einhouse, P. R. Bowser, R. G. Getchell & W. T. Lee, 2006. Influence of limnological conditions on Clostridium botulinum type E presence in Eastern Lake Erie sediments (Great Lakes, USA). Hydrobiologia 563: 189–200.Google Scholar
  74. Perry, K. & J. Lynn, 2009. Detecting physiological and pesticide-induced apoptosis in early developmental stages of invasive bivalves. Hydrobiologia 628: 153–154.Google Scholar
  75. Perry, W. L., D. M. Lodge & J. L. Feder, 2002. Importance of hybridization between indigenous and nonindigenous freshwater species: an overlooked threat to North American biodiversity. Systematic Biology 51: 255–275.PubMedGoogle Scholar
  76. Phelps, H. L., 1994. The Asiatic clam (Corbicula fluminea) invasion and system-level ecological change in the Potomac river estuary near Washington, D.C. Estuaries 17: 614–621.Google Scholar
  77. Pickles, S. B., 2000. Use of ultraviolet radiation for zebra mussel control at Ontario power generation. Presented at the 10th International Aquatic Nuisances Species and Zebra Mussel Conference, Toronto.Google Scholar
  78. Pigneur, L. M., J. Marescaux, K. Roland, E. Etoundi, J. P. Descy & K. Van Doninck, 2011. Phylogeny and androgenesis in the invasive Corbicula clams (Bivalvia, Corbiculidae) in Western Europe. BMC Evolutionary Biology 11: 147.PubMedCentralPubMedGoogle Scholar
  79. Pimentel, D., L. Lach, R. Zuniga & D. Morrison, 2000. Environmental and economic costs of nonindigenous species in the United States. BioScience 50: 53–65.Google Scholar
  80. Prejs, A., K. Lewandowski & A. Stanczykowska-Piotrowska, 1990. Size-selective predation by roach (Rutilus rutilus) on zebra mussel (Dreissena polymorpha): field studies. Oecologia 83: 378–384.Google Scholar
  81. Prokopovich, N. P. & D. J. Herbert, 1965. Sedimentation in the Delta-Mendota Canal. Journal of American Water Works Association 57: 375–382.Google Scholar
  82. Reeders, H. H. & A. Bij de Vaate, 1990. Zebra mussels (Dreissena polymorpha): a new perspective for water quality management. Hydrobiologia 200/201: 437–450.Google Scholar
  83. Reeders, H. H. & A. Bij de Vaate, 1992. Bioprocessing of polluted suspended matter from the water column by the zebra mussel (Dreissena polymorpha Pall.). Hydrobiologia 239: 53–63.Google Scholar
  84. Reichard, M., M. Vrtílek, K. Douda & C. Smith, 2012. An invasive species reverses the roles in a host–parasite relationship between bitterling fish and unionid mussels. Biology Letters 8: 601–604.PubMedCentralPubMedGoogle Scholar
  85. Rhymer, J. M. & D. Simberloff, 1996. Extinction by hybrization and introgression. Annual Review of Ecology, Evolution, and Systematics 27: 83–109.Google Scholar
  86. Ricciardi, A., F. G. Whoriskey & J. B. Rasmussen, 1997. The role of the zebra mussel (Dreissena polymorpha) in structuring macroinvertebrate communities on hard substrata. Canadian Journal of Fisheries and Aquatic Sciences 54: 2596–2608.Google Scholar
  87. Ricciardi, A., R. J. Neves & J. B. Rasmussen, 1998. Impending extinctions of North American freshwater mussels (Unionoida) following the zebra mussel (Dreissena polymorpha) invasion. Journal of Animal Ecology 67: 613–619.Google Scholar
  88. Richardson, D. M. & P. Pyšek, 2008. Fifty years of invasion ecology—the legacy of Charles Elton. Diversity and Distributions 14: 161–168.Google Scholar
  89. Riley, S. C., K. R. Munkittrick, A. N. Evans & C. C. Krueger, 2008. Understanding the ecology of disease in Great Lakes fish populations. Aquatic Ecosystem Health and Management 11: 321–334.Google Scholar
  90. Roditi, H. A., D. L. Strayer & S. E. G. Findlay, 1997. Characteristics of zebra mussel (Dreissena polymorpha) biodeposits in a tidal freshwater estuary. Archiv für Hydrobiologie 140: 207–219.Google Scholar
  91. Schloesser, D. W., T. F. Nalepa & G. L. Mackie, 1996. Infestation of unionid bivalves (Unionidae) in North America. American Zoologist 36: 300–310.Google Scholar
  92. Simberloff, D., 2009. The role of propagule pressure in biological invasions. Annual Review of Ecology, Evolution, and Systematics 40: 81–102.Google Scholar
  93. Simberloff, D., 2011. How common are invasion-induced ecosystem impacts? Biological Invasions 13: 1255–1268.Google Scholar
  94. Simberloff D., J.-L. Martin, J. Aronson, F. Courchamp, B. Galil, E. Garcia-Berthou, P. Genovesi, V. Maris, M. Pascal, P. Pyšek, R. Sousa, E. Tabacchi, M. Vilà & D. Wardle, 2013. Impacts of biological invasions—what’s what and the way forward. Trends in Ecology and Evolution (in press).Google Scholar
  95. Smith, C., M. Reichard, P. Jurajda & M. Przybylski, 2004. The reproductive ecology of the European bitterling (Rhodeus sericeus). Journal of Zoology 262: 107–124.Google Scholar
  96. Sousa, R., C. Antunes & L. Guilhermino, 2008a. Ecology of the invasive Asian clam Corbicula fluminea (Müller, 1774) in aquatic ecosystems: an overview. Annales de Limnologie—International Journal of Limnology 44: 43–52.Google Scholar
  97. Sousa, R., A. J. A. Nogueira, M. Gaspar, C. Antunes & L. Guilhermino, 2008b. Growth and extremely high production of the non-indigenous invasive species Corbicula fluminea (Müller, 1774): possible implications for ecosystem functioning. Estuarine, Coastal and Shelf Science 80: 289–295.Google Scholar
  98. Sousa, R., J. L. Gutiérrez & D. C. Aldridge, 2009. Non-indigenous invasive bivalves as ecosystem engineers. Biological Invasions 11: 2367–2385.Google Scholar
  99. Sousa, R., P. Morais, E. Dias & C. Antunes, 2011a. Biological invasions and ecosystem functioning: time to merge. Biological Invasions 13: 1055–1058.Google Scholar
  100. Sousa, R., F. Pilotto & D. C. Aldridge, 2011b. Fouling of European freshwater bivalves (Unionidae) by the invasive zebra mussel (Dreissena polymorpha). Freshwater Biology 56: 867–876.Google Scholar
  101. Sousa, R., S. Varandas, R. Cortes, A. Teixeira, M. Lopes-Lima, J. Machado & L. Guilhermino, 2012. Massive die-offs of freshwater bivalves as resource pulses. Annales de Limnologie—International Journal of Limnology 48: 105–112.Google Scholar
  102. Stewart, A. R., S. N. Luoma, C. E. Schlekat, M. A. Doblin & K. A. Hieb, 2004. Food web pathway determines how selenium affects aquatic ecosystems: a San Francisco Bay case study. Environmental Science and Technology 38: 4519–4526.PubMedGoogle Scholar
  103. Stohlgren, T. J., D. Binkley, G. W. Chong, M. A. Kalkhan, L. D. Schell, K. A. Bull, Y. Otsuki, G. Newman, M. Bashkin & Y. Son, 1999. Exotic plant species invade hot spots of native plant diversity. Ecological Monographs 69: 25–46.Google Scholar
  104. Strayer, D. L., 1999. Effects of alien species on freshwater mollusks in North America. Journal of the North American Benthological Society 18: 74–98.Google Scholar
  105. Strayer, D. L., 2009. Twenty years of zebra mussels: lessons from the mollusk that made headlines. Frontiers in Ecology and the Environment 7: 135–141.Google Scholar
  106. Strayer, D. L., 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biology 55: 152–174.Google Scholar
  107. Strayer, D. L., 2012. Eight questions about invasions and ecosystem functioning. Ecology Letters 15: 1199–1210.PubMedGoogle Scholar
  108. Strayer, D. L. & A. R. Fetterman, 1999. Changes in the distribution of freshwater mussels (Unionidae) in the upper Susquehanna River Basin, 1955–1965. American Midland Naturalist 142: 328–339.Google Scholar
  109. Strayer, D. L. & K. J. Jirka, 1997. The pearly mussels of New York State. New York State Museum Memoir 26: 1–113.Google Scholar
  110. Strayer, D. L. & H. M. Malcom, 2007. Effects of zebra mussels (Dreissena polymorpha) on native bivalves: the beginning of the end or the end of the beginning? Journal of the North American Benthological Society 26: 111–122.Google Scholar
  111. Strayer, D. L. & L. C. Smith, 2001. The zoobenthos of the freshwater tidal Hudson River and its response to the zebra mussel (Dreissena polymorpha) invasion. Archiv für Hydrobiologie Supplementband 139: 1–52.Google Scholar
  112. Strayer, D. L., N. F. Caraco, J. J. Cole, S. Findlay & M. L. Pace, 1999. Transformation of freshwater ecosystems by bivalves: a case study of zebra mussels in the Hudson River. BioScience 49: 19–27.Google Scholar
  113. Strayer, D. L., K. Hattala & A. Kahnle, 2004. Effects of an invasive bivalve (Dreissena polymorpha) on fish populations in the Hudson River estuary. Canadian Journal of Fisheries and Aquatic Sciences 61: 924–941.Google Scholar
  114. Strayer, D. L., V. T. Eviner, J. M. Jeschke & M. L. Pace, 2006. Understanding the long-term effects of species invasions. Trends in Ecology and Evoluion 21: 645–651.Google Scholar
  115. Sylvester, F., D. Boltovskoy & D. Cataldo, 2007a. Fast response of freshwater consumers to a new trophic resource: predation on the recently introduced Asian bivalve Limnoperna fortunei in the lower Paraná River, South America. Austral Ecology 32: 403–415.Google Scholar
  116. Sylvester, F., D. Boltovskoy & D. Cataldo, 2007b. The invasive bivalve Limnoperna fortunei enhances benthic invertebrate densities in South American floodplain rivers. Hydrobiologia 589: 15–27.Google Scholar
  117. URS Group, Inc. (URS), 2009. Zebra mussel eradication project. Final summary report, Nebraska [available on internet at Accessed 8 June 2012].
  118. Vilà, M., C. Basnou, P. Pyšek, M. Josefsson, P. Genovesi, S. Gollasch, W. Nentwig, S. Olenin, A. Roques, D. Roy, P. Hulme & DAISIE partners, 2010. How well do we understand the impacts of alien species on ecosystem services? A pan-European cross-taxa assessment. Frontiers in Ecology and the Environment 8: 135–144.Google Scholar
  119. Virginia Department of Game and Inland Fisheries (VDGIF), 2005. Millbrook Quarry zebra mussel and quagga mussel eradication. Final environmental assessment, Virginia [available on internet at Accessed 8 June 2012].
  120. Virginia Department of Game and Inland Fisheries (VDGIF), 2009. Millbrook Quarry zebra mussel eradication [available on internet at Accessed 8 June 2012].
  121. Ward, J. M. & A. Ricciardi, 2007. Impacts of Dreissena invasions on benthic macroinvertebrate communities: a meta-analysis. Diversity and Distributions 13: 155–165.Google Scholar
  122. Werner, S., M. Mörtl, H.-G. Bauer & K.-O. Rothhaupt, 2005. Strong impact of wintering waterbirds on zebra mussel (Dreissena polymorpha) populations at Lake Constance, Germany. Freshwater Biology 50: 1412–1426.Google Scholar
  123. Wimbush, J., M. E. Frischer, J. W. Zarzynski & S. A. Nierzwicki-Bauer, 2009. Eradication of colonizing populations of zebra mussels (Dreissena polymorpha) by early detection and SCUBA removal: Lake George, NY. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 703–713.Google Scholar
  124. Wittmann, M. E., S. Chandra, J. E. Reuter, S. G. Schladow, B. C. Allen & K. J. Webb, 2012. The control of an invasive bivalve, Corbicula fluminea, using gas impermeable benthic barriers in a large natural lake. Environmental Management 6: 1163–1173.Google Scholar
  125. Zhu, B., D. G. Fitzgerald, C. M. Mayer, L. G. Rudstam & E. L. Mills, 2006. Alteration of ecosystem function by zebra mussels in Oneida Lake: impacts on submerged macrophytes. Ecosystems 9: 1017–1028.Google Scholar
  126. Zhulidov, A. V., A. V. Kozhara, G. H. Scherbina, T. F. Nalepa, A. Protasov, S. A. Afanasiev, E. G. Pryanichnikova, D. A. Zhulidov, T. Y. Gurtovaya & D. F. Pavlov, 2010. Invasion history, distribution, and relative abundances of Dreissena bugensis in the old world: a synthesis of data. Biological Invasions 12: 1923–1940.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ronaldo Sousa
    • 1
    • 2
  • Adriana Novais
    • 1
  • Raquel Costa
    • 3
  • David L. Strayer
    • 4
  1. 1.CBMA—Centre of Molecular and Environmental Biology, Department of BiologyUniversity of MinhoBragaPortugal
  2. 2.CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of PortoPortoPortugal
  3. 3.CIEPQPF, Department of Chemical EngineeringUniversity of CoimbraCoimbraPortugal
  4. 4.Cary Institute of Ecosystem StudiesMillbrookUSA

Personalised recommendations