Skip to main content

A phytoplankton trophic index to assess the status of lakes for the Water Framework Directive

Abstract

Despite improvements in wastewater treatment systems, the impact of anthropogenic nutrient sources remains a key issue for the management of European lakes. The Water Framework Directive (WFD) provides a mechanism through which progress can be made on this issue. The Directive requires a classification of the ecological status of phytoplankton, which includes an assessment of taxonomic composition. In this paper, we present a composition metric, the plankton trophic index, that was developed in the WISER EU FP7 project and demonstrate how it has been used to compare national phytoplankton classification systems in Northern and Central Europe. The metric was derived from summer phytoplankton data summarised by genus from 1,795 lakes, covering 20 European countries. We show that it is significantly related to total phosphorus concentrations, but that it is also sensitive to alkalinity, lake size and climatic variables. Through the use of country-specific reference values for the index, we demonstrate that it is significantly related to other national phytoplankton assessment systems and illustrate for a single European (intercalibration) lake type how it was used to intercalibrate WFD boundaries from different countries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Bates, D., M. Maechler & B. Bolker, 2011. lme4: Linear Mixed-Effects Models Using S4 Classes. http://CRAN.R-project.org/package=lme4.

  2. Bird, D. F. & J. Kalff, 1987. Algal phagotrophy: regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnology and Oceanography 32: 277–284.

    Article  CAS  Google Scholar 

  3. Birk, S., W. Bonne, A. Borja, S. Brucet, A. Courrat & S. Poikane, 2012. Three hundred ways to assess Europe’s surface waters: an almost complete overview of biological methods to implement the Water Framework Directive. Ecological Indicators 18: 31–41.

    Article  Google Scholar 

  4. Braak, C. J. F. & C. W. N. Looman, 1986. Weighted averaging, logistic regression and the Gaussian response model. Plant Ecology 65: 3–11.

    Article  Google Scholar 

  5. Brettum, P., 1989. Alger som indikator på vannkvalitet i norske innsjøer. Planteplankton (Algae as indicators of water quality in Norwegian lakes. Phytoplankton) (in Norwegian). Niva Report. NIVA: 111.

  6. Brettum, P. & T. Andersen, 2005. The use of phytoplankton as indicators of water quality. NIVA-Report SNO 4818-2004: 197 pp.

  7. Buzzi, F., G. Morabito & A. Marchetto, 2011. L’indice fitoplanctonico PTIot per la valutazione della qualità ecologica dei laghi. Report ISE-CNR: 33–43.

  8. Carpenter, S. & J. F. Kitchell, 1987. Consumer control of lake productivity. BioScience 38: 764–769.

    Article  Google Scholar 

  9. Carvalho, L., S. Poikane, A. L. Solheim, G. Phillips, G. Borics, J. Catalan, C. D. Hoyos, D. S., B. Dudley, M. Järvinen, C. Laplace-Treyture, K. Maileht, M. C., U. Mischke, J. Moe, G. Morabito, P. Nõges, T. Nõges, I. Ott, A. Pasztaleniec, B. Skjelbred & S. J. Thackeray, 2012. Strength and uncertainty of lake phytoplankton metrics for assessing eutrophication impacts in lakes. Hydrobiologia. doi:10.1007/s10750-012-1344-1.

  10. Coesel, P. F. M. & K. J. Meesters, 2007. Desmids of the lowlands: Mesotaeniaceae and Desmidiaceae of the European lowlands. KNNV Publishing, Zeist: 351 pp.

  11. Cronberg, G., G. Lindmark & S. Björk, 1988. Mass development of the flagellate Gonyostomum semen (Raphidophyta) in Swedish forest lakes – an effect of acidification? Hydrobiologia 161: 217–236.

    Article  CAS  Google Scholar 

  12. Dodkins, I. A. N., B. Rippey & P. Hale, 2005. An application of canonical correspondence analysis for developing ecological quality assessment metrics for river macrophytes. Freshwater Biology 50: 891–904.

    Article  Google Scholar 

  13. Förster, K., 1982. Die Binnengewässer, Band XVI. Das Phytoplankton des Süßswassers: Systematik und Biologie: 8 Teil 1. Hälfte: Conjugatophycae, Zygnematales und Desmidiales (excl. Zygnemataceae) (ed) Huber-Pestalozzi, G., Schweizebart’sche Verlagsbuchhandlung, Stuttgart: 543 p.

  14. Guiry, M.D. & Guiry, G.M. 2012. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org. Searched 2009.

  15. Hörnström, E., 1981. Trophic characterisation of lakes by means of qualitative phytoplankton analysis. Limnologica 13: 246–261.

    Google Scholar 

  16. Järvinen, M., S. Drakare, G. Free, A. Lyche-Solheim, G. Phillips, B. Skjelbred, U. Mischke, I. Ott, S. Poikane, M. Söndergaard, A. Pasztaleniec, J. v. Wichelen & R. Portielje, 2012. Phytoplankton indicator taxa for reference conditions in lowland Northern and Central European lakes. Hydrobiologia. doi:10.1007/s10750-012-1315-6.

  17. John, D. M., A. J. Brook & B. A. Whitton, 2002. The Freshwater Algal Flora of the British Isles. An Identification Guide to Freshwater and Terrestrial Algae. Cambridge University Press, Cambridge: 702.

    Google Scholar 

  18. Keskitalo, J. & P. Eloranta (eds), 1999. Limnology of Humic Waters. Backhuys Biological Books, Kerkverwe: 292.

    Google Scholar 

  19. Komárek, J. & B. Fott, 1983. Die Binnengewässer, Band XVI. Das Phytoplankton des Süßwassers: Systematik und Biologie: 7 Teil 1 Hälfte Chlorophyceae (Grünalgen) Ordnung: Chlorococcales, E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, DEU: 1044 pp.

  20. Komárek, J., & K. Anagnostidis, 1999. Süßwasserflora von Mitteleuropa 19/1. Cyanoprokaryota 1.Teil: Chroococcales. Gustav Fischer, Stuttgart: 548 pp.

  21. Komárek, J. & K. Anagnostidis, 2005. Süßwasserflora von Mitteleuropa 19/2. Cyanoprokaryota 2.Teil: Oscillatoriales. Elsevier Spektrum Akademischer Verlag, München: 759 pp.

  22. Legendre, P. & E. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  Google Scholar 

  23. Lepistö, L., S. Antikainen & J. Kivinen, 1994. The occurrence of Gonyostomum semen (Ehr.) Diesing in Finnish lakes. Hydrobiologia 273: 1–8.

    Article  Google Scholar 

  24. Lepistö, L., A.-L. Holopainen & H. Vuoristo, 2004. Type-specific and indicator taxa of phytoplankton as a quality criterion for assessing the ecological status of Finnish boreal lakes. Limnologica – Ecology and Management of Inland Waters 34: 236–248.

    Article  Google Scholar 

  25. Lugoli, F., M. Garmendia, S. Lehtinen, P. Kauppila, S. Moncheva, M. Revilla, L. Roselli, N. Slabakova, V. Valencia, K. M. Dromph & A. Basset, 2012. Application of a new multi-metric phytoplankton index to the assessment of ecological status in marine and transitional waters. Ecological Indicators 23: 338–355.

    Article  Google Scholar 

  26. Lyche-Solheim, A., S. Rekolainen, S. Moe, L. Carvalho, G. Phillips, R. Ptacnik, W. Penning, L. Toth, C. O’Toole, A.-K. Schartau & T. Hesthagen, 2008. Ecological threshold responses in European lakes and their applicability for the Water Framework Directive (WFD) implementation: synthesis of lakes results from the REBECCA project. Aquatic Ecology 42: 317–334.

    Article  CAS  Google Scholar 

  27. Lyche-Solheim, A., G. Phillips, B. Skjelbred, S. Drakare, M. Järvinen & G. Free, 2012. WFD Intercalibration phase 2, milestone 6 report on Northern GIG lakes phytoplankton. https://circabc.europa.eu/sd/d/c1bf4c91-35f6-4c5c-893d-665f5fca7733/PHYTO_NOR_Lake_TechnicalReport_%20march_CIRCA.doc.

  28. Marchetto, A., B. M. Padedda, M. A. Mariani, A. Luglie & N. Sechi, 2009. A numerical index for evaluating phytoplankton response to changes in nutrient levels in deep mediterranean reservoirs. Journal of Limnology 68: 106–121.

    Article  Google Scholar 

  29. Metcalfe, J. L., 1989. Biological water quality assessment of running waters based on macroinvertebrate communities: history and present status in Europe. Environmental Pollution 60: 101–139.

    PubMed  Article  CAS  Google Scholar 

  30. Mischke, U., U. Riedmüller, E. Hoehn, I. Schonfelder & B. Schönfelder & B. Nixdorf, 2008. Description of the German system for phytoplankton-based assessment of lakes for the implementation of the EU Water Framework Directive (WFD). In Mischke, U. & B. Nixdorf (eds), Bewertung von Seen mittels Phytoplankton zur Umsetzung der EU-Wasserrahmenrichtlinie. BTUC-AR 2/2008. University Press BTU, Cottbus: 117–146.

  31. Mischke, U., B. Skjelbred, G. Morabito, R. Ptacnik, C. de Hoyos, A. I. Negro, C. Laplace, W.-H. Kusber, R. Bijkerk, G. Phillips, A. L. Solheim, G. Borics & L. Carvalho, 2012a. Phytoplankton indicator database according to the WISER project. www.freshwaterecology.info, version 5.0. Searched 2009.

  32. Mischke, U., S. Thackeray, M. Dunbar, C. McDonald, L. Carvalho, C. de Hoyos, M. Jarvinen, C. Laplace-Treyture, G. Morabito, B. Skjelbred, A. Lyche-Solheim, A. B. Brierley & B. Dudley, 2012b. Deliverable D3.1–4: guidance document on sampling, analysis and counting standards for phytoplankton in lakes: 51 pp. http://www.wiser.eu/results/deliverables/.

  33. Mitchell, T., T. R. Carter, P. D. Jones, M. Hulme & M. New, 2004. A comprehensive set of high-resolution grids of monthly climate data for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre for Climate Change Research and School of Environmental Sciences. University of East Anglia, Norwich: 30pp.

    Google Scholar 

  34. Moe, S., B. Dudley & R. Ptacnik, 2008. REBECCA databases: experiences from compilation and analyses of monitoring data from 5,000 lakes in 20 European countries. Aquatic Ecology 42: 183–201.

    Article  CAS  Google Scholar 

  35. Moe, J., A. Schmidt-Kloiber, B. Dudley & D. Herring, 2012. The WISER way of organising ecological data from European rivers, lakes and transitional/coastal waters. Hydrobiologia. doi:10.1007/s10750-012-1337-0.

  36. Morabito, G. & L. Carvalho, 2012. Phytoplankton size structure and morpho-functional groups. In Phillips, G., G. Morabito, L. Carvalho, A. Lyche-Solheim, B. Skjelbred, J. Moe, T. Andersen, U. Mischke, C. de Hoyos & G. Borics (eds), Report on lake phytoplankton composition metrics, including a common metric approach for use in intercalibration by all GIGs. http://www.wiser.eu/results/deliverables/.

  37. Naumann, E., 1919. Några synpunkter angående limnoplanktons ökologi, med särskild hänsyn till fytoplankton. Svensk Botanisk Tidsskrift 13: 51–58.

    Google Scholar 

  38. Nõges, T., 2009. Relationships between morphometry, geographic location and water quality parameters of European lakes. Hydrobiologia 633: 33–43.

    Article  Google Scholar 

  39. OECD, 1982. Eutrophication of Waters Monitoring, Assessment and Control. Final Report. OECD, Paris: 154 pp.

  40. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, R. G. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2010. vegan: Community Ecology Package.

  41. Pace, M. L., 1984. Zooplankton community structure, but not biomass, influences the phosphorus–chlorophyll a relationship. Canadian Journal of Fisheries and Aquatic Sciences 41: 1089–1096.

    Article  Google Scholar 

  42. Padisák, J., G. Borics, I. Grigorszky & É. Soróczki-Pintér, 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the water framework directive: the assemblage index. Hydrobiologia 553: 1–14.

    Article  Google Scholar 

  43. Phillips, G., U. Mischke, J. Van Wichelen, M. Søndergaard, I. Karottki, I. Ott, K. Maileht, C. Laplace-Treyture, G. Free, R. O. B. Portielje & A. Pasztaleniec, 2012. WFD Intercalibration phase 2, milestone 6 report on Cenral Baltic GIG lakes phytoplankton. https://circabc.europa.eu/sd/d/c7332ca8-ca89-4c0d-90f9-59198f1d2bd1/PHYTO_CB%20_Lake_TechnicalReport_6marchb_CIRCA.doc.

  44. Poikane, S., 2009. Water Framework Directive intercalibration technical report. Part 2:Llakes. JRC Scientific and Technical Reports. European Commission, Luxembourg: 176. doi:10.2788/23415.

  45. Poikane, S., M. V. D. Berg, J. Ortiz-Casas, G. Phillips, A. L. Solheim, D. Tierney & G. Wolfram, 2009. Lake assessment strategy in European Union (EU): case study of European large lakes. Verh International Verein Limnology 30: 1007–1012.

    Google Scholar 

  46. Poikane, S., M. Alves, C. Argillier, M. van den Berg, F. Buzzi, E. Hoehn, C. de Hoyos, I. Karottki, C. Laplace-Treyture, A. Solheim, J. Ortiz-Casas, I. Ott, G. Phillips, A. Pilke, J. Pádua, S. Remec-Rekar, U. Riedmüller, J. Schaumburg, M. Serrano, H. Soszka, D. Tierney, G. Urbanič & G. Wolfram, 2010. Defining chlorophyll-a reference conditions in European lakes. Environmental Management 45: 1286–1298.

    PubMed  Article  Google Scholar 

  47. Ptacnik, R., L. Lepistö, E. Willén, P. Brettum, T. Andersen, S. Rekolainen, A. Lyche-Solheim & L. Carvalho, 2008. Quantitative responses of lake phytoplankton to eutrophication in Northern Europe. Aquatic Ecology 42: 227–236.

    Article  CAS  Google Scholar 

  48. Ptacnik, R., A. Solimini & P. Brettum, 2009. Performance of a new phytoplankton composition metric along a eutrophication gradient in Nordic lakes. Hydrobiologia 633: 75–82.

    Article  CAS  Google Scholar 

  49. R Development Core Team, 2009. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  50. Rengefors, K., G. A. Weyhenmeyer & I. Bloch, 2012. Temperature as a driver for the expansion of the microalga Gonyostomum semen in Swedish lakes. Harmful Algae 18: 65–73.

    Article  Google Scholar 

  51. Reynolds, C. S., 1980. Phytoplankton assemblages and their periodicity in stratifying lake systems. Holartic Ecology 3: 141–159.

    Google Scholar 

  52. Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, New York.

    Google Scholar 

  53. Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  54. Salmaso, N., G. Morabito, F. Buzzi, L. Garibaldi, M. Simona & R. Mosello, 2006. Phytoplankton as an indicator of the water quality of the deep lakes south of the Alps. Hydrobiologia 563: 167–187.

    Article  CAS  Google Scholar 

  55. Schwarz, G., 1978. Estimating the dimensions of a model. The Annals of Statistics 6: 461–464.

    Article  Google Scholar 

  56. Solimini, A., A. Cardoso, J. Carstensen, G. Free, A.-S. Heiskanen, N. Jepsen, P. Nòges, S. Poikane & W. van de Bund, 2008. The Monitoring of Ecological Status of European Freshwaters. Wiley, Chippenham.

    Google Scholar 

  57. Stumm, W. & J. P. Morgan, 1996. Aquatic Chemistry. Wiley, New York.

    Google Scholar 

  58. Swedish EPA, 2010. Status, Potential and Quality Requirement for Lakes, Watercourses, Coastal and Transitional Waters – A Handbook on How Quality Requirements in Bodies of Surfacewater Can be Determined and Monitored: 421 pp.

  59. Talling, J. F., 1976. The depletion of carbon dioxide from lake water by phytoplankton. Journal of Ecology 64: 79–121.

    Article  CAS  Google Scholar 

  60. Taylor, W. D., S. C. Hern, L. R. Williams, V. W. Lambou, M. K. Morris & F. A. Morris, 1979. Phytoplankton water quality relationships in U.S. lakes, Part IV: The common phytoplankton genera from Eastern and South-Eastern lakes. USEPA, Working paper 710: 79.

  61. Teiling, E., 1955. Some mesotrophic phytoplankton indicators. International Association of Theoretical and Applied Limnology XII: 212–215.

    Google Scholar 

  62. Tolotti, M., L. Forsstrom, G. Morabito, B. Thaler, M. Stoyneva, M. Cantonati, M. Šiško & A. Lotter, 2009. Biogeographical characterisation of phytoplankton assemblages in high altitude, and high latitude European lakes. In Catalan, J., C. J. Curtis & M. Kernan (eds), Patterns and Factors of Biota Distribution in Remote European Mountain Lakes. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.

    Google Scholar 

  63. Venables, W. N. & B. Rippey, 2002. Modern Applied Statistics with S. Springer, New York.

    Book  Google Scholar 

  64. Watson, S. B., E. McCauley & J. Downing, 1997. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnology and Oceanography 42: 486–495.

    Article  Google Scholar 

  65. Weyhenmeyer, G. A., 2009. Increasing dissimilarity of water chemical compositions in a warmer climate. Global Biogeochemical Cycles 23: GB2004.

    Article  Google Scholar 

  66. Weyhenmeyer, G. A., H. Peter & E. Willén, 2012. Shifts in phytoplankton species richness and biomass along a latitudinal gradient – consequences for relationships between biodiversity and ecosystem functioning. Freshwater Biology. doi:10.1111/j.1365-2427.2012.02779.x.

  67. WHO, 1999. Toxic Cyanobacteria in Water: A Guide to their Public Health Consequences, Monitoring and Management. E & F N Spon, London: 400.

    Google Scholar 

  68. Willén, E., 2000. Phytoplankton in water quality assessment – an indicator concept. In Heinonen, P., G. Ziglio & A. Van Der Beken (eds), Hydrological and Limnological Aspects of Lake Monitoring. Wiley, New York.

    Google Scholar 

  69. WFD CIS Eutrophication Guidance, 2009. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document No. 23: Guidance document on eutrophication assessment in the context of European water policies. European Commision, Luxembourg.

  70. WFD CIS Intercalibration Guidance, 2011. Common Implementation Strategy for the Water Framework Directive (200/60/EC). Guidance Document No 14: Guidance Document on the Intercalibration Process 2008–2011. European Commission, Luxembourg.

  71. Wood, S. N., 2006. Generalized Additive Models: An Introduction with R. Chapman and Hall, New York.

    Google Scholar 

Download references

Acknowledgments

The paper is a result of the project WISER (Water bodies in Europe: Integrative Systems to assess Ecological status and Recovery) funded by the European Union under the 7th Framework Programme, Theme 6 (Environment including Climate Change) (Contract No. 226273). We would like to thank Birger Skjelbred, Jannicke Moe and Bernard Dudley who supported data management and extraction and especially thank all the data providers. These include (figures in brackets give the number of WBs): Mediterranean GIG (Data manager: Caridad de Hoyos, CEDEX-CEH). Spain: Ministerio de Agricultura, Alimentación y Medio Ambiente (122), Centro de Estudios Hidrográficos (CEDEX-CEH) (46). Italy: Università degli Studi di Sassari. Dipartimento di Scienze Botaniche, Ecologiche e Geologiche (DiSBEG) (18). Portugal: Instituto da Água, I.P. (INAG) (18), Romania: Ministeriul Meduli şi Pădurilor (MMP) (10). Cyprus: Ministry of Agriculture, Natural Resources and Environment, Water Development Department (MANRE-WDD) (7). France: Institut national de recherche en sciences et rechnologies pour l′environnement et l′agriculture (IRSTEA) (6), Greece: Maria Moustaka, Aristotle University of Thessaloniki. Central-Baltic GIG (Data manager: Ute Mischke, IGB). Estonia: Estonian University of Life Sciences (EMU) gathered for the state monitoring programme supported by the Estonian Ministry of Environment. Latvia: Latvian Environment, Geology and Meteorology Centre. Lithuania - EPA Lithuania. Denmark: National Environmental Research Institute, University of Aarhus. Belgium: Jeroen Van Wichelen, Ghent University (UGENT). Netherlands: Rijkswaterstaat (RWS). Germany: Data from German water bodies were kindly provided by the following institutions of the German Federal States: Landesamt für Umwelt, Gesundheit und Verbraucherschutz Brandenburg (LUGV; 127), Ministerium für Landwirtschaft, Umwelt und Verbraucherschutz Mecklenburg-Vorpommern (MLUV, Seenprogramm, 65), Landesbetrieb für Hochwasserschutz und Wasserwirtschaft Sachsen-Anhalt (LHW, 5), Landesamt für Landwirtschaft, Umwelt und ländliche Räume Schleswig–Holstein (LLUR, 13), Senatsverwaltung für Gesundheit, Soziales und Verbraucherschutz Berlin (SenGUV, 12), Niedersächsische Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN, Sulingen, 1). Poland: Data were provided partly by the Institute of Environmental Protection - National Research Institute. The Inspection for Environmental Protection provided data obtained within the framework of state environmental monitoring. Hungary: Environmental Protection Inspectorate for Trans-Tiszanian Region. Northern GIG (Data manager: Geoff Phillips, EA). Finland: Finnish Environment Institute (SYKE). Sweden: Swedish University of Agricultural Sciences (SLU). Norway: Norwegian Institute for Water Research (NIVA). United Kingdom—Scottish Environment Protection Agency (SEPA) and the Environment Agency for England & Wales (EA). Ireland: Environment Protection Agency (EPA).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Geoff Phillips.

Additional information

Guest editors: C. K. Feld, A. Borja, L. Carvalho & D. Hering / Water bodies in Europe: integrative systems to assess ecological status and recovery

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 47 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Phillips, G., Lyche-Solheim, A., Skjelbred, B. et al. A phytoplankton trophic index to assess the status of lakes for the Water Framework Directive. Hydrobiologia 704, 75–95 (2013). https://doi.org/10.1007/s10750-012-1390-8

Download citation

Keywords

  • Phytoplankton
  • Eutrophication
  • Europe
  • Water Framework Directive
  • Trophic index
  • Intercalibration
  • Classification
  • Indicator taxa