, Volume 704, Issue 1, pp 165–177 | Cite as

Maximum growing depth of submerged macrophytes in European lakes

  • Martin Søndergaard
  • Geoff Phillips
  • Seppo Hellsten
  • Agnieszka Kolada
  • Frauke Ecke
  • Helle Mäemets
  • Marit Mjelde
  • Mattia M. Azzella
  • Alessandro Oggioni


Submerged macrophytes are important elements for the structure and functioning of lake ecosystems. In this study, we used chemical and maximum colonisation depth (C_max) data from 12 European countries in order to investigate how suitable C_max may describe the impact by eutrophication. The analyses include data from 757 lakes and 919 lake years covering oligotrophic to eutrophic lakes. Overall, C_max was closely related to Secchi depth (R 2 = 0.58) and less closely to chlorophyll a (R 2 = 0.31), TP (R 2 = 0.31) and total nitrogen, TN (R 2 = 0.24). The low coefficients of determination between C_max and nutrient concentrations suggest that other response factors than nutrient-phytoplankton-light conditions are important for C_max and that it will be difficult to establish strong relationships between external nutrient loading and C_max. Yearly monitoring for 13–16 years in eight Danish lakes showed considerable year-to-year variability in C_max, which for the individual lakes only related weakly to changes in Secchi depth. The use of C_max as an eutrophication indicator is especially relevant in not very shallow lakes (maximum depth >4–5 m), not too turbid lakes (C_max >1 m) and not very humic lakes (colour <60 mg Pt/l).


Maximum colonisation depth Water framework directive Eutrophication Secchi depth Nutrients Humic lakes 



We wish to acknowledge all data providers, in particular Deirdre Tierney and Caroline Plant (EPA, Ireland), data from the Northern Ireland Environment Agency, data from 96 German water bodies provided by Landesamt für Umwelt, Gesundheit und Verbraucherschutz in Brandenburg (LUGV), and data from Sweden sampled within the State Environmental Monitoring Programme and owned by Chief Inspector at the national monitoring of macrophytes in lakes, funded by the Swedish Environmental Protection. Anne Mette Poulsen and Juana Jacobsen are acknowledged for linguistic and graphical assistance. The paper is a part of the WISER project, funded by the European Union under the 7th Framework Programme, Theme 6 (Environment including Climate Change), contract No. 226273. It has also been supported by the EU project REFRESH (Adaptive strategies to Mitigate the Impacts of Climate Change on European Freshwater Ecosystems, Contract No.: 244121) and CLEAR (a Villum Kann Rasmussen Centre of Excellence Project).


  1. Barko, J. W. D. G., M. Hardin & S. Matthews, 1982. Growth and morphology of submersed freshwater macrophytes in relation to light and temperature. Canadian Journal of Botany 60(6): 877–887.CrossRefGoogle Scholar
  2. Barko, J. W. & R. M. Smart, 1983. Effects of organic matter additions to sediment on the growth of aquatic plants. Journal of Ecology 71: 161–175.CrossRefGoogle Scholar
  3. Beck, M. W., L. K. Hatch, B. Vondracek & R. D. Valley, 2010. Development of a macrophyte-based index of biotic integrity for Minnesota lakes. Ecological Indicators 10(5): 968–979.CrossRefGoogle Scholar
  4. Blindow, I., 1992a. Decline of charophytes during eutrophication: comparison with angiosperms. Freshwater Biology 28: 9–14.CrossRefGoogle Scholar
  5. Blindow, I., 1992b. Long- and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshwater Biology 28: 15–27.CrossRefGoogle Scholar
  6. Blindow, I., A. Hargeby, J. Meyercordt & H. Schubert, 2006. Primary production in two shallow lakes with contrasting plant form dominance: a paradox of enrichment? Limnology and Oceanography 51: 2711–2721.CrossRefGoogle Scholar
  7. Canfield, D. E., K. A. Langeland, S. B. Linda & W. T. Haller, 1985. Relations between water transparency and maximum depth of macrophyte colonization in lakes. Journal of Aquatic Plant Management 23: 25–28.Google Scholar
  8. Carpenter, S. R. & D. M. Lodge, 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26: 341–370.CrossRefGoogle Scholar
  9. Carvalho, L., Phillips, G.L., Maberley, S.C. & R. Clarke, 2006. Chlorophyll and phosphorus classifications for UK lakes. SNIFFER report WFD38, Edinburgh.Google Scholar
  10. Chambers, P. A. & J. Kalff, 1985. Depth distribution and biomass of submersed aquatic macrophyte communities in relation to Secchi depth. Canadian Journal of Fisheries and Aquatic Sciences 42(4): 701–709.CrossRefGoogle Scholar
  11. Dale, H., 1984. Hydrostatic pressure and aquatic plant growth: a laboratory study. Hydrobiologia 111(3): 193–200.CrossRefGoogle Scholar
  12. Dale, H., 1986. Temperature and light: the determining factors in maximum depth distribution of aquatic macrophytes in Ontario, Canada. Hydrobiologia 133(1): 73–77.CrossRefGoogle Scholar
  13. Duarte, C. M. & J. Kalff, 1987. Latitudinal influences on the depths of maximum colonization and maximum biomass of submerged angiosperms in lakes. Canadian Journal of Fisheries and Aquatic Sciences 44(10): 1759–1764.CrossRefGoogle Scholar
  14. Dudley B., M. Dunbar, E. Penning, A. Kolada, S. Hellsten, A. Oggioni, V. Bertrin, F. Ecke, & M. Søndergaard, 2012. Measurements of uncertainty in macrophyte metrics used to assess European lake water quality. Hydrobiologia. doi: 10.1007/s10750-012-1338-z.
  15. Eloranta, P., 1978. Light penetration in different types of lakes in Central Finland. Holarctic Ecology 1: 362–366.Google Scholar
  16. Gayet, G., M. Guillemain, H. Fritz, F. Mesleard, C. Begnis, A. Costiou, G. Body, L. Curtet & J. Broyer, 2011. Do mute swan (Cygnus olor) grazing, swan residence and fishpond nutrient availability interactively control macrophyte communities? Aquatic Botany 95: 110–116.CrossRefGoogle Scholar
  17. Hellsten, S., 1997. Environmental factors related to water level fluctuation: a comparative study in northern Finland. Boreal Environmental Research 2: 345–367.Google Scholar
  18. Hilt, S., E. M. Gross, M. Hupfer, H. Morscheid, J. Mahlmann, A. Melzer, J. Poltz, S. Sandrock, E. M. Scharf, S. Schneider & K. V. de Weyer, 2006. Restoration of submerged vegetation in shallow eutrophic lakes: a guideline and state of the art in Germany. Limnologica 36: 155–171.CrossRefGoogle Scholar
  19. Håkanson, L. & V. V. Boulion, 2001. Regularities in primary production, Secchi depth and fish yield and a new system to define trophic and humic state indices for lake ecosystems. International Review of Hydrobiology 86: 23–62.CrossRefGoogle Scholar
  20. Jensen, S., 1979. Classification of lakes in southern Sweden on the basis of their macrophyte composition by means of multivariate methods. Plant Ecology 39(3): 129–146.Google Scholar
  21. Jeppesen, E., M. Søndergaard & K. Christoffersen (eds), 1997. The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, Vol. 131. Springer, New York: 423.Google Scholar
  22. Jeppesen, E., M. Søndergaard, T. L. Lauridsen, T. A. Davidson, Z. Liu, N. Mazzeo, C. Trochine, K. Özkan, H. S. Jensen, D. Trolle, F. Starling, X. Lazzaro, L. S. Johansson, R. Bjerring, L. Liboriussen, S. E. Larsen, F. Landkildehus, S. Egemose & M. Meerhoff, 2012. Biomanipulation as a Restoration Tool to Combat Eutrophication: recent Advances and Future Challenges. Advances in Ecological Research. Vol. 47. Elsevier, New York.Google Scholar
  23. Karlsson, J., P. Bystrom, J. Ask, P. Ask, L. Persson & M. Jansson, 2009. Light limitation of nutrient-poor lake ecosystems. Nature 460: 506–508.PubMedCrossRefGoogle Scholar
  24. Kirk, J. T. O., 1994. Light & photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  25. Lacoul, P. & B. Freedman, 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews 14: 89–136.CrossRefGoogle Scholar
  26. Lepisto, A., P. Kortelainen & T. Mattsson, 2008. Increased organic C and N leaching in a northern boreal river basin in Finland. Global Biogeochemical Cycles 22(3): 10.CrossRefGoogle Scholar
  27. Lodge, D. M., 1991. Herbivory on freshwater macrophytes. Aquatic Botany 41(195): 224.Google Scholar
  28. Madsen, T. V., B. Olesen & J. Bagger, 2002. Carbon acquisition and carbon dynamics by aquatic isoetids. Aquatic Botany 73: 351–371.CrossRefGoogle Scholar
  29. May, L. & L. Carvalho, 2010. Maximum growing depth of macrophytes in Loch Leven, Scotland, United Kingdom, in relation to historical changes in estimated phosphorus loading. Hydrobiologia 646: 123–131.CrossRefGoogle Scholar
  30. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200(201): 367–377.CrossRefGoogle Scholar
  31. Moss, B., D. Stephen, C. Alvarez, E. Becares, W. Van de Bund, S. E. Collings, E. Van Donk, E. De Eyto, T. Feldmann, C. Fernández-Aláez, M. Fernández-Aláez, R. J. M. Franken, F. García-Criado, E. M. Gross, M. Gyllström, L.-A. Hansson, K. Irvine, A. Järvalt, J. P. Jensen, E. Jeppesen, T. Kairesalo, R. Kornijów, T. Krause, H. Künnap, A. Laas, E. Lill, B. Lorens, H. Luup, M. R. Miracle, P. Nõges, T. Nõges, M. Nykänen, I. Ott, W. Peczula, E. T. H. M. Peeters, G. Phillips, S. Romo, V. Russell, J. Salujõe, M. Scheffer, K. Siewertsen, H. Smal, C. Tesch, H. Timm, L. Tuvikene, I. Tonno, T. Virro, E. Vicente & D. Wilson, 2003. The determination of ecological status in shallow lakes: a tested system (ECOFRAME) of the European water framework directive. Aquatic Conservation: Marine and Freshwater Ecosystems 13: 507–549.CrossRefGoogle Scholar
  32. Mäemets, H. & L. Freiberg, 2007. Coverage and depth limit of macrophytes as tools for classification of lakes. Proceedings of the Estonian Academy of Sciences, Biology and Ecology 56: 124–140.Google Scholar
  33. Middelboe, A. L. & S. Markager, 1997. Depth limits and minimum light requirements of freshwater macrophytes. Freshwater Biology 37: 553–568.CrossRefGoogle Scholar
  34. Miller, S. A. & F. D. Provenza, 2007. Mechanisms of resistance of freshwater macrophytes to herbivory by invasive juvenile common carp. Freshwater Biology 52(1): 39–49.CrossRefGoogle Scholar
  35. Pall, K. & V. Moser, 2009. Austrian index macrophytes (AIM-module 1) for lakes: a water framework directive compliant assessment system for lakes using aquatic macrophytes. Hydrobiologia 633(1): 83–104.CrossRefGoogle Scholar
  36. Phillips, G. L., D. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated waters. Aquatic Botany 4: 103–126.CrossRefGoogle Scholar
  37. Phillips, G., O.-P. Pietiläinen, L. Carvalho, A. Solimini, A. Lyche Solheim & A. C. Cardoso, 2008. Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquatic Ecology 42: 213–226.CrossRefGoogle Scholar
  38. Poikane, S. 2009. Water framework directive intercalibration technical report, part 2 lakes. European Commission, Joint Research Centre, Ispra: 177.Google Scholar
  39. Poikane, S., M. Berg, S. Hellsten, C. de Hoyos, J. Ortiz-Casas, K. Pall, R. Portielje, P. Phillips, A. Lyche Solheim, T. Deirdre, G. Wolfram & W. van de Bund, 2011. Lake ecological assessment systems and intercalibration for the European water framework directive: aims, achievements and further challenges. Procedia Environmental Sciences 9: 153–168.CrossRefGoogle Scholar
  40. Qvarnemark, L. M. & P. S. Sheldon, 2004. Moose grazing decreases aquatic plant diversity. Journal of Freshwater Ecology 19(3): 407–410.CrossRefGoogle Scholar
  41. Rooney, N. & J. Kalff, 2000. Inter-annual variation in submerged macrophyte community biomass and distribution: the influence of temperature and lake morphometry. Aquatic Botany 68: 321–335.CrossRefGoogle Scholar
  42. Rørslett, B. & S. W. Johansen, 1995. Dynamic response of the submerged macrophyte, Isoetes lacustris, to alternating light levels under field conditions. Aquatic Botany 51: 223–242.CrossRefGoogle Scholar
  43. Sand-Jensen, K., 1990. Epiphyte shading: its role in resulting depth distribution of submerged aquatic macrophytes. Folia Geobotanica and Phytotaxonomica 25: 315–320.Google Scholar
  44. Sand-Jensen, K. & T. V. Madsen, 1991. Minimum light requirements of submerged freshwater macrophytes in laboratory growth experiments. The Journal of Ecology 79: 749–764.CrossRefGoogle Scholar
  45. Sand-Jensen, K., T. Riis, O. Vestergaard & S. E. Larsen, 2000. Macrophyte decline in Danish lakes and streams over the past 100 years. Journal of Ecology 88: 1030–1040.CrossRefGoogle Scholar
  46. Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution. 8: 275–279.CrossRefGoogle Scholar
  47. Schwarz, A., I. Hawes & C. Howard-Williams, 1996. The role of photosynthesis/light relationships in determining lower depth limits of Characeae in South Island, New Zealand lakes. Freshwater Biology 35: 69–80.CrossRefGoogle Scholar
  48. Schwarz, A. & C. Howard-Williams, 2000. Analysis of relationships between maximum depth limits of aquatic plants and underwater light in 63 New Zealand lakes. New Zealand Journal of Marine and Freshwater Research 34: 157–174.CrossRefGoogle Scholar
  49. Sheldon, R. B. & C. W. Boylen, 1977. Maximum depth inhabited by aquatic vascular plants. The American Midland Naturalist 97: 248.CrossRefGoogle Scholar
  50. Spears, B. M., I. D. M. Gunn, L. Carvalho, I. J. Winfield, B. Dudley, K. Murphy & L. May, 2009. An evaluation of methods for sampling macrophyte maximum colonisation depth in Loch Leven, Scotland. Aquatic Botany 91: 75–81.CrossRefGoogle Scholar
  51. Spence, D. H. N., 1982. The zonation of plants in freshwater lakes. Advances in Ecological Research 12: 37–124.CrossRefGoogle Scholar
  52. Søndergaard, M., L. Olufsen, T. Lauridsen, E. Jeppesen & T. V. Madsen, 1996. The impact of grazing waterfowl on submerged macrophytes: in situ experiments in a shallow eutrophic lake. Aquatic Botany 53: 73–84.CrossRefGoogle Scholar
  53. Søndergaard, M., E. Jeppesen, J. P. Jensen & S. L. Amsinck, 2005. Water framework directive: ecological classification of Danish lakes. The Journal of Applied Ecology 42: 616–629.CrossRefGoogle Scholar
  54. Søndergaard, M., L. S. Johansson, T. L. Lauridsen, T. B. Jørgensen, L. Liboriussen & E. Jeppesen, 2010. Submerged macrophytes as indicators of the ecological quality of lakes. Freshwater Biology 55: 893–908.CrossRefGoogle Scholar
  55. Søndergaard, M., S. E. Larsen, T. B. Jørgensen & E. Jeppesen, 2011. Using chlorophyll a and cyanobacteria in the ecological classification of lakes. Ecological Indicators 11: 1403–1412.CrossRefGoogle Scholar
  56. van den Berg, M. S., M. Scheffer, H. Coops & J. Simons, 1998. The role of characean algae in the management of eutrophic shallow lakes. Journal of Phycology 34: 750–756.CrossRefGoogle Scholar
  57. Vestergaard, O. & K. Sand-Jensen, 2000. Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes. Aquatic Botany 67(2): 85–107.CrossRefGoogle Scholar
  58. Wang, H. Z., H. J. Wang, X. M. Liang, L. Y. Nia, X. Q. Liu & Y. D. Cui, 2005. Empirical modelling of submersed macrophytes in Yangtze lakes. Ecological Modelling 188: 483–491.CrossRefGoogle Scholar
  59. Wilson, S. D. & P. A. Keddy, 1985. Plant zonation on a shoreline gradient: physiological response curves of component species. The Journal of Ecology 73: 851–860.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Martin Søndergaard
    • 1
  • Geoff Phillips
    • 2
  • Seppo Hellsten
    • 3
  • Agnieszka Kolada
    • 4
  • Frauke Ecke
    • 5
  • Helle Mäemets
    • 6
  • Marit Mjelde
    • 7
  • Mattia M. Azzella
    • 8
  • Alessandro Oggioni
    • 9
  1. 1.Department of BioscienceAarhus UniversitySilkeborgDenmark
  2. 2.Environment AgencyKings Meadow HouseReadingUK
  3. 3.SYKE, University of OuluOuluFinland
  4. 4.Department of Freshwater Assessment Methods and Monitoring, Institute of Environmental ProtectionNational Research InstituteWarsawPoland
  5. 5.Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
  6. 6.Estonian Univ Life SciInst Agr & Environm Res, Ctr LimnolTartumaaEstonia
  7. 7.Norwegian Institute for Water ResearchOsloNorway
  8. 8.Departement of Environmental BiologyLa Sapienza University of RomeRomeItaly
  9. 9.Institute for Electromagnetic Sensing of the Environment CNR, IREAMilanItaly

Personalised recommendations