, Volume 705, Issue 1, pp 101–118 | Cite as

Feeding dynamics of the copepod Diacyclops thomasi before, during and following filamentous cyanobacteria blooms in a large, shallow temperate lake

  • Gretchen Rollwagen-Bollens
  • Stephen M. Bollens
  • Alejandro Gonzalez
  • Julie Zimmerman
  • Tammy Lee
  • Josh Emerson
Primary Research Paper


Cyanobacteria blooms are an increasing problem in temperate freshwater lakes, leading to reduced water quality and in some cases harmful effects from toxic cyanobacteria species. To better understand the role of zooplankton in modulating cyanobacteria blooms, from 2008 to 2010 we measured water quality and plankton abundance, and measured feeding rates and prey selectivity of the copepod Diacyclops thomasi before, during and following summertime cyanobacteria blooms in a shallow, eutrophic lake (Vancouver Lake, Washington, USA). We used a combined field and experimental approach to specifically test the hypothesis that copepod grazing was a significant factor in establishing the timing of cyanobacteria bloom initiation and eventual decline in Vancouver Lake. There was a consistent annual succession of zooplankton taxa, with cyclopoid copepods (D. thomasi) dominant in spring, followed by small cladocerans (Eubosmina sp.). Before each cyanobacteria bloom, large cladocerans (Daphnia retrocurva, Daphnia laevis) peaked in abundance but quickly disappeared, followed by brief increases in rotifers. During the cyanobacteria blooms, D. thomasi was again dominant, with small cladocerans abundant in autumn. Before the cyanobacteria blooms, D. thomasi substantially consumed ciliates and dinoflagellates (up to 100% of prey biomass per day), which likely allowed diatoms to flourish. A shift in copepod grazing toward diatoms before the blooms may have then helped to facilitate the rapid increase in cyanobacteria. Copepod grazing impact was the highest during the cyanobacteria blooms both years, but focused on non-cyanobacteria prey; copepod grazing was minimal as the cyanobacteria blooms waned. We conclude that cyclopoid copepods may have an indirect role (via trophic cascades) in modulating cyanobacteria bloom initiation, but do not directly contribute to cyanobacteria bloom decline.


Copepod grazing Cyanobacteria bloom Diacyclops thomasi Harmful algae 



We thank the Vancouver Lake Watershed Partnership, the Clark County Department of Public Works, the State of Washington Water Research Center/US Geological Survey, and the Washington Department of Ecology for financial support of this project in the form of grants to G.R.B. and S.M.B. We also acknowledge the contributions of Mr. Steve Prewitt, La Center High School science teacher, and the Murdock Charitable Trust “Partners in Science” program which provided summer support for his participation. We also thank the Departments of Zoology and Marine Science at the University of Otago, New Zealand, for generously providing office space to G.R.B and S.M.B, as well as Washington State University for providing sabbatical support to S.M.B, during the preparation of this manuscript. Finally, we acknowledge the contributions of two anonymous reviewers who provided many helpful comments.


  1. Adrian, R. & T. Frost, 1993. Omnivory in cyclopoid copepods: comparisons of algae and invertebrates as food for three, differently sized species. Journal of Plankton Research 15: 643–658.CrossRefGoogle Scholar
  2. Boyer, J., G. Rollwagen-Bollens & S. M. Bollens, 2011. Microzooplankton grazing before, during and after a cyanobacterial bloom in Vancouver Lake, Washington, USA. Aquatic Microbial Ecology 64: 163–174.CrossRefGoogle Scholar
  3. Brandl, Z., 1998. Feeding strategies of planktonic cyclopoids in lacustrine ecosystems. Journal of Marine Systems 15: 87–95.CrossRefGoogle Scholar
  4. Brandl, Z., 2005. Freshwater copepods and rotifers: predators and their prey. Hydrobiologia 546: 475–489.CrossRefGoogle Scholar
  5. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.PubMedCrossRefGoogle Scholar
  6. Burns, C. W. & Z. Xu, 1990. Calanoid copepods feeding on algae and filamentous cyanobacteria: rates of ingestion, defaecation and effects on trichome length. Journal of Plankton Research 12: 201–213.CrossRefGoogle Scholar
  7. Carmichael, W. W., 1992. Cyanobacteria secondary metabolites—the cyanotoxins. Journal of Applied Microbiology 72: 445–459.CrossRefGoogle Scholar
  8. Caromile, S. J., W. R. Meyer & C. S. Jackson, 2000. 1998 Warmwater fish survey of Vancouver Lake, Clark County. Washington Department of Fish and Wildlife.Google Scholar
  9. Chan, F., M. L. Pace, R. W. Howarth & R. M. Marine, 2004. Bloom formation in heterocystic nitrogen-fixing cyanobacteria: the dependence on colony size and zooplankton grazing. Limnology & Oceanography 49: 2171–2178.CrossRefGoogle Scholar
  10. Codd, G. A., 1995. Cyanobacterial toxins: occurrence, properties and biological significance. Water Science & Technology 32: 149–156.CrossRefGoogle Scholar
  11. Confer, J. L. & M. V. Moore, 1987. Interpreting selectivity indices calculated from field data or conditions of prey replacement. Canadian Journal of Fisheries & Aquatic Science 44: 1529–1533.CrossRefGoogle Scholar
  12. Dam, H. G. & W. T. Peterson, 1988. The effect of temperature on the gut clearance rate constant of planktonic copepods. Journal of Experimental Marine Biology and Ecology 123: 1–14.CrossRefGoogle Scholar
  13. Dao, T. S., L.-C. Do-Hong & C. Wiegand, 2010. Chronic effects of cyanobacterial toxins on Daphnia magna and their offspring. Toxicon 55: 1244–1254.PubMedCrossRefGoogle Scholar
  14. DeMott, W. R., 1995a. Food selection by calanoid copepods in response to between-lake variation in food abundance. Freshwater Biology 33: 171–180.CrossRefGoogle Scholar
  15. DeMott, W. R., 1995b. Optimal foraging by a suspension-feeding copepod: responses to short-term and seasonal variation in food resources. Oecologia 103: 230–240.CrossRefGoogle Scholar
  16. DeMott, W. R., 1999. Foraging strategies and growth inhibition in five daphnids feeding on mixtures of a toxic cyanobacterium and a green alga. Freshwater Biology 42: 263–274.CrossRefGoogle Scholar
  17. DeMott, W. R. & F. Moxter, 1991. Foraging on cyanobacteria by copepods: responses to chemical defenses and resource abundance. Ecology 72: 1820–1834.CrossRefGoogle Scholar
  18. DeMott, W. R., Q. Z. Zhang & W. W. Carmichael, 1991. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnology & Oceanography 36: 1346–1357.CrossRefGoogle Scholar
  19. DeMott, W. R., R. D. Gulati & E. Van Donk, 2001. Daphnia food limitation in three hypereutrophic Dutch lakes: evidence for exclusion of large-bodied species by interfering filaments of cyanobacteria. Limnology & Oceanography 46: 2054–2060.CrossRefGoogle Scholar
  20. Dobberfuhl, D. R., R. Miller & J. J. Elser, 1998. Effects of a cyclopoid copepod (Diacyclops thomasi) on phytoplankton and the microbial food web. Aquatic Microbial Ecology 12: 29–37.CrossRefGoogle Scholar
  21. Dokulil, M. T. & K. Teubner, 2000. Cyanobacterial dominance in lakes. Hydrobiologia 438: 1–12.CrossRefGoogle Scholar
  22. Downing, J. A., S. B. Watson & E. McCauley, 2001. Predicting cyanobacteria dominance in lakes. Canadian Journal of Fisheries and Aquatic Science 58: 1905–1908.CrossRefGoogle Scholar
  23. Elser, J. J., 1999. The pathway to noxious cyanobacteria blooms in lakes: the food web as the final turn. Freshwater Biology 42: 537–543.CrossRefGoogle Scholar
  24. Elser, J. J., E. R. Marzolf & C. R. Goldman, 1990. Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: a review and critique of experimental enrichments. Canadian Journal of Fisheries & Aquatic Science 47: 1468–1477.CrossRefGoogle Scholar
  25. Elser, J. J., C. Luecke, M. T. Brett & C. R. Goldman, 1995. Effects of food web compensation after manipulation of rainbow trout in an oligotrophic lake. Ecology 76: 52–69.CrossRefGoogle Scholar
  26. Elser, J. J., R. W. Sterner, A. E. Galford, et al., 2000. Pelagic C:N:P stoichiometry in a eutrophied lake: responses to a whole-lake food-web manipulation. Ecosystems 3: 293–307.CrossRefGoogle Scholar
  27. Fulton, R. S., 1988. Grazing on filamentous algae by herbivorous zooplankton. Freshwater Biology 20: 263–271.CrossRefGoogle Scholar
  28. Ger, K. A., S. J. Teh, D. V. Baxa, S. Lesmeister & C. R. Goldman, 2010. The effects of dietary Microcystis aeruginosa and microcystin on the copepods of the upper San Francisco Estuary. Freshwater Biology 55: 1548–1559.CrossRefGoogle Scholar
  29. Ghadouani, A., B. Pinel-Alloul & E. E. Prepas, 2003. Effects of experimentally induced cyanobacterial blooms on crustacean zooplankton communities. Freshwater Biology 48: 363–381.CrossRefGoogle Scholar
  30. Gifford, S. M., G. Rollwagen-Bollens & S. M. Bollens, 2007. Mesozooplankton omnivory in the upper San Francisco Estuary. Marine Ecology Progress Series 348: 33–46.CrossRefGoogle Scholar
  31. Gilbert, J. J. & M. W. Durand, 1990. Effect of Anabaena flos-aquae on the abilities of Daphnia and Keratella to feed and reproduce on unicellular algae. Freshwater Biology 24: 577–596.CrossRefGoogle Scholar
  32. Gliwicz, Z. M., 1990. Why do cladocerans fail to control algal blooms? Hydrobiologia 200(201): 83–97.CrossRefGoogle Scholar
  33. Hambright, K. D., N. G. Hairston Jr, W. R. Schaffner & R. W. Howarth, 2007. Grazer control of nitrogen fixation: synergisms in the feeding ecology of two freshwater crustaceans. Fundamental and Applied Limnology 170: 89–101.CrossRefGoogle Scholar
  34. Hillebrand, H., C.-D. Durselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  35. Iglesias, C., N. Mazzeo, M. Meerhoff, G. Laserot, et al. 2011. High predation is of key importance for dominance of small bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667: 133–147.Google Scholar
  36. Irigoien, X., R. Head, U. Klenke, B. Meyer-Harms, D. Harbour, B. Niehoff, H.-J. Hirche & R. Harris, 1998. A high frequency time series at weathership M, Norwegian Sea, during the 1997 spring bloom: feeding of adult female Calanus finmarchicus. Marine Ecology Progress Series 172: 127–137.CrossRefGoogle Scholar
  37. Jing, H., H. Liu, T. Wong & M. Chen, 2010. Impact of mesozooplankton grazing on the microbial community revealed by denaturing gradient gel electrophoresis (DGGE). Journal of Experimental Marine Biology and Ecology 383: 39–47.CrossRefGoogle Scholar
  38. Kasprzak, P., R. C. Lathrop & S. R. Carpenter, 1999. Influence of different sized Daphnia species on chlorophyll concentration and summer phytoplankton community structure in eutrophic Wisconsin lakes. Journal of Plankton Research 21: 2161–2174.CrossRefGoogle Scholar
  39. Koski, M., K. Schmidt, J. Engstrom-Ost, M. Viitasalo, S. Jonasdottir, S. Repka & K. Sivonen, 2002. Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena. Limnology & Oceanography 47: 878–885.CrossRefGoogle Scholar
  40. Kosten, S., V. L. M. Huszar, E. Bécares, L. S. Costa, E. Van Donk, L.-A. Hansson, E. Jeppesen, C. Kruk, G. Lacerot, N. Mazzeo, L. De Meester, B. Moss, M. Lürling, T. Noges, S. Romo & M. Scheffer, 2012. Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology 18: 118–126.CrossRefGoogle Scholar
  41. Lampert, W., 1982. Further studies on the inhibitory effect of the toxic blue-green Microcystis aeruginosa on the filtering rate of zooplankton. Archiv für Hydrobiologie 95: 207–225.Google Scholar
  42. Lampert, W., 1987. Laboratory studies on zooplankton-cyanobacteria interactions. New Zealand Journal of Marine & Freshwater Research 21: 483–490.CrossRefGoogle Scholar
  43. Le Blanc, J. S., W. D. Taylor & O. E. Johannsson, 1997. The feeding ecology of the cyclopoid copepod Diacyclops thomasi in Lake Ontario. Journal of Great Lakes Research 23: 369–381.CrossRefGoogle Scholar
  44. Lechowicz, M. J., 1982. The sampling characteristics of electivity indices. Oecologia 52: 22–30.CrossRefGoogle Scholar
  45. Marin, V., M. E. Huntley & B. Frost, 1986. Measuring feeding rates of pelagic herbivores: analysis of experimental design and methods. Marine Biology 93: 49–58.CrossRefGoogle Scholar
  46. Menden-Deuer, S. & E. Lessard, 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology & Oceanography 45: 569–579.CrossRefGoogle Scholar
  47. Nesjtgaard, J. C., L.-J. Naustvoll & A. Sahzin, 2001. Correcting for underestimation of microzooplankton grazing in bottle incubation experiments with mesozooplankton. Marine Ecology Progress Series 221: 59–75.CrossRefGoogle Scholar
  48. Oberhaus, L., M. Gelinas, B. Pinel-Alloul, A. Ghadouani & J.-F. Humbert, 2007. Grazing of two toxic Planktothrix species by Daphnia pulicaria: potential for bloom control and transfer of microcystins. Journal of Plankton Research 29: 827–838.CrossRefGoogle Scholar
  49. O’Neill, J. M., T. W. Davis, M. A. Burford & C. J. Gobler, 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14: 313–334.CrossRefGoogle Scholar
  50. Paerl, H. W., 1988. Nuisance phytoplankton blooms in coastal, estuarine and inland waters. Limnology & Oceanography 33: 823–847.CrossRefGoogle Scholar
  51. Paerl, H. W., 2008. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum. Advances in Experimental & Medical Biology 619: 217–237.CrossRefGoogle Scholar
  52. Paerl, H. W. & R. S. Fulton, 2006. Ecology of harmful cyanobacteria. In Graneli, E. & J. Turner (eds), Ecology of Harmful Marine Algae. Ecological Studies, Vol. 189. Springer-Verlag, Berlin: 95–101.Google Scholar
  53. Paerl, H. W. & J. Huisman, 2008. Blooms like it hot. Science 320: 57–58.PubMedCrossRefGoogle Scholar
  54. Paerl, H. W. & J. Huisman, 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports 1: 27–37.CrossRefGoogle Scholar
  55. Panosso, R., P. Carlsson, B. Kozlowski-Suzuki, S. M. F. O. Azevado & E. Graneli, 2003. Effect of grazing by a neotropical copepod, Notodiaptomus, on a natural cyanobacterial assemblage and on toxic and non-toxic cyanobacterial strains. Journal of Plankton Research 25: 1169–1175.CrossRefGoogle Scholar
  56. Paterson, M. J., D. L. Findlay, A. G. Salki, L. L. Hendzel & R. H. Hesslein, 2002. The effects of Daphnia on nutrient stoichiometry and filamentous cyanobacteria: a mesocosm experiment in a eutrophic lake. Freshwater Biology 47: 1217–1233.CrossRefGoogle Scholar
  57. Pennak, R., 1989. Freshwater Invertebrates of the United States, 3rd ed. John Wiley & Sons, New York.Google Scholar
  58. Rollwagen-Bollens, G. C. & D. L. Penry, 2003. Feeding dynamics of Acartia spp. copepods in a large, temperate estuary (San Francisco Bay, CA). Marine Ecology Progress Series 257: 139–158.CrossRefGoogle Scholar
  59. Rollwagen-Bollens, G. C., S. Gifford & S. M. Bollens, 2011. The role of protistan microzooplankton in the upper San Francisco Estuary planktonic food web: source or sink? Estuaries & Coasts 34: 1026–1038.CrossRefGoogle Scholar
  60. Samuelsson, K. & A. Andersson, 2003. Predation limitation in the pelagic microbial food web in an oligotrophic aquatic system. Aquatic Microbial Ecology 30: 239–250.CrossRefGoogle Scholar
  61. Sellner, K. G., G. J. Doucette & G. J. Kirkpatrick, 2003. Harmful algal blooms: causes, impacts and detection. Journal of Indian Microbiology & Biotechnology 30: 383–406.CrossRefGoogle Scholar
  62. Siuda, A. N. S. & H. G. Dam, 2010. Effects of omnivory and predator–prey elemental stoichiometry on planktonic trophic interactions. Limnology & Oceanography 55: 2107–2116.CrossRefGoogle Scholar
  63. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.Google Scholar
  64. Stemberger, R. S., 1985. Prey selection by the copepod Diacyclops thomasi. Oecologia 65: 492–497.CrossRefGoogle Scholar
  65. Strickland, J. D. H. & T. R. Parsons, 1972. A practical manual for seawater analysis. Fisheries Research Board of Canada Bulletin 167.Google Scholar
  66. Teegarden, G. J., 1999. Copepod grazing selection and particle discrimination on the basis of PSP toxic content. Marine Ecology Progress Series 181: 163–176.CrossRefGoogle Scholar
  67. Tilman, D., R. Kiesling, R. Sterner, S. Kilham & F. A. Johnson, 1986. Green, blue-green and diatom algae: taxonomic differences in competitive ability for phosphorus, silica and nitrogen. Archiv für Hydrobiologie 106: 473–486.Google Scholar
  68. Vanderploeg, H. A. & D. Scavia, 1979a. Calculation and use of selectivity coefficients of feeding: zooplankton grazing. Ecological Modeling 7: 135–149.CrossRefGoogle Scholar
  69. Vanderploeg, H. A. & D. Scavia, 1979b. Two electivity indices for feeding with special reference to zooplankton grazing. Journal of the Fisheries Research Board of Canada 36: 362–365.CrossRefGoogle Scholar
  70. Vanni, M. J. & J. Temte, 1990. Seasonal patterns of grazing and nutrient limitation of phytoplankton in a eutrophic lake. Limnology & Oceanography 35: 697–709.CrossRefGoogle Scholar
  71. Vijverberg, J., H. P. Koelewijn & W. L. T. van Densen, 2005. Effects of predation and food on the population dynamics of the raptorial cladoceran Leptodora kindtii. Limnology & Oceanography 50: 455–464.CrossRefGoogle Scholar
  72. Wagner, C. & R. Adrian, 2009. Cyanobacteria dominance: Quantifying the effects of climate change. Limnology & Oceanography 54: 2460–2468.CrossRefGoogle Scholar
  73. Wiackowski, K., M. T. Brett & C. R. Goldman, 1994. Differential effects of zooplankton species on ciliate community structure. Limnology & Oceanography 39: 486–492.CrossRefGoogle Scholar
  74. Wickham, S., 1995. Cyclops predation on ciliates: species-specific differences and functional responses. Journal of Plankton Research 17: 1633–1646.CrossRefGoogle Scholar
  75. Zar, J., 1996. Biostatistical Analysis, 3rd ed. Prentice Hall, New Jersey.Google Scholar
  76. Zollner, E., H.-G. Hoppe, U. Sommer & K. Jurgens, 2009. Effect of zooplankton-mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates). Limnology & Oceanography 54: 262–275.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Gretchen Rollwagen-Bollens
    • 1
  • Stephen M. Bollens
    • 1
  • Alejandro Gonzalez
    • 1
  • Julie Zimmerman
    • 1
  • Tammy Lee
    • 1
  • Josh Emerson
    • 1
  1. 1.School of the EnvironmentWashington State UniversityVancouverUSA

Personalised recommendations