, Volume 702, Issue 1, pp 255–265 | Cite as

Contribution of nitrogen fixation to the external nitrogen load of a water quality control reservoir (Kis-Balaton Water Protection System, Hungary)

  • Hajnalka Horváth
  • Kálmán Mátyás
  • György Süle
  • Mátyás Présing
Primary Research Paper


To reduce external nutrient loading by the greatest nutrient transporter to Lake Balaton, the Kis-Balaton Water Protection System commenced operation in 1985. Cyanobacterial blooms (Cylindrospermopsis raciborskii, Aphanizomenon sp. and Anabaena sp.) cause N-loading via nitrogen fixation, which can exceed the total external N-load to the reservoir during the summer. Nitrogen fixation of phytoplankton in the system in 2009 was measured using the 15N-isotope technique. The light dependence of fixation was described by an exponential saturated curve which was then used to calculate daily nitrogen fixation. The total amount of nitrogen fixed during summer months (July–August) exceeded 170 t for the 21 km2 of open water area, which was more than three times higher than the external load by inflows. Total nitrogen:total phosphorus mass ratios (2.5–11.5) favoured the development of a N2-fixing cyanobacterial bloom, the contribution of which to the total algae biomass varied between 50 and 90%. The estimated primary production of phytoplankton was used to calculate the contribution of nitrogen fixation (0.01–28%) to algae N-demand. Nitrogen fixing cyanobacteria were found to play a key role in addressing the N-demand of phytoplankton.


Cyanobacteria N2-fixation 15N-methodology Nutrient ratio Shallow water Water quality control reservoir 



Grateful acknowledgments are due to Norbert Thuray and Szabolcs Szalai (West-Transdanubian Environmental and Water Directorate) for their help with sampling, and Terézia Horvath and Erika Kozma for their assistance. We wish to thank Stephanie Palmer for correcting the manuscript.


  1. Bulgakov, N. G. & A. P. Levich, 1999. The nitrogen:phosphorus ratio as a factor regulating phytoplankton community structure. Archive für Hydrobiologie 146: 3–22.Google Scholar
  2. De Nobel, W. T. (Pim), J. Huisman, J. L. Snoep & L. R. Mur, 1997. Competition for phosphorus between the nitrogen-fixing cyanobacteria Anabaena and Aphanizomenon. FEMS Microbiology Ecology 24: 259–267.Google Scholar
  3. Downing, J. A., S. B. Watson & E. McCauley, 2001. Predicting Cyanobacteria dominance in lakes. Canadian Journal of Fisheries and Aquatic Sciences 58: 1905–1908.CrossRefGoogle Scholar
  4. Elliott, R. J. & A. G. Porter, 1971. A rapid cadmium reduction method for the determination of nitrate in bacon and curing brines. The Analyst 96: 522–527.CrossRefGoogle Scholar
  5. Falkowski, P. G. & C. Davis, 2004. Natural proportions. Nature 431:131. In Nõges T., R. Laugaste, P. Nõges & I. Tõnno, 2008. Critical N:P ratio cyanobacteria and N2-fixing species in the large shallow temperate lakes Peipsi and Võrtsjärv, North-East Europe. Hydrobiologia 599: 77–86.Google Scholar
  6. Flett, R. J., D. W. Schindler, R. D. Hamilton & N. E. Campbell, 1980. Nitrogen fixation in Canadian Precambrian Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences 37: 494–505.CrossRefGoogle Scholar
  7. Gorzó, Gy., 1990. Investigation of the nitrogen-transport in the reservoir of Kis-Balaton. Vízügyi Közlemények LXXII: 233–242. (in Hungarian with English abstract).Google Scholar
  8. Hall, S. R., V. H. Smith, D. A. Lytle & M. A. Leibold, 2005. Constraints on primary producer N:P stoichiometry along N:P supply ratio gradients. Ecology 86: 1894–1904.CrossRefGoogle Scholar
  9. Howarth, R. W., R. Marino, J. Lane & J. J. Cole, 1988a. Nitrogen fixation in freshwater, estuarine and marine ecosystems. 1. Rates and importance. Limnology and Oceanography 33: 669–687.CrossRefGoogle Scholar
  10. Howarth, R. W., J. J. Cole & R. Marino, 1988b. Nitrogen fixation in freshwater, estuarine and marine ecosystems. 2. Biological controls. Limnology and Oceanography 33: 688–701.CrossRefGoogle Scholar
  11. Huisman, J. & F. Hulot, 2005. Population dynamics of harmful cyanobacteria. Factors affecting species composition. In Huisman, J., H. C. P. Matthijs & P. M. Visser (eds), Harmful Cyanobacteria. Springer, Dordrecht: 143–176.CrossRefGoogle Scholar
  12. Iwamura, T., H. Nagai & S. Ishimura, 1970. Improved methods for determining contents of chlorophyll, protein, ribonucleic and desoxyribonucleic acid in planktonic populations. International Review of Hydrobiology 55: 131–147.CrossRefGoogle Scholar
  13. Joó, O. & Gy. Lotz, 1980. A Zala folyó szerepe a Balaton eutrofizálódásában. Vízügyi Közlemények 62: 225–256.Google Scholar
  14. Kenesi, Gy., H. M. Shafik, A. W. Kovács, S. Herodek & M. Présing, 2009. Effect of nitrogen forms on growth, cell composition and N2 fixation of Cylindrospermopsis raciborskii in phosphorus-limited chemostat cultures. Hydrobiologia 623(1): 191–202.CrossRefGoogle Scholar
  15. Korponai, J., K. Mátyás, G. Paulovits, I. Tátrai & N. Kovács, 1997. The effect of different fish communities on the cladoceran plankton assemblages of the Kis-Balaton Reservoir, Hungary. Hydrobiologia 360: 211–221.CrossRefGoogle Scholar
  16. Kovács, Gy., 2002. A Kis-Balaton Védőrendszer szén-, nitrogén- és kén-forgalmi folyamatai. Kutatási jelentés: 1–43.Google Scholar
  17. Kovács, A., M. Présing & L. Vörös, 1999. Comparative study of the most important planktonic N-fixing cyanobacteria from Lake Balaton. Hidrológiai Közlöny 79: 324–326. (in Hungarian with English abstract).Google Scholar
  18. Lathrop, R. C., S. R. Carpenter, C. A. Stow, P. A. Soranno & J. C. Panuska, 1998. Phosphorus loading reductions needed to control blue-green algal blooms in Lake Mendota. Canadian Journal of Fisheries and Aquatic Sciences 55: 1169–1178.CrossRefGoogle Scholar
  19. Mackereth, F. J. H., J. Heron & J. F. Talling, 1989. Water analysis: some revised methods for limnologists. Freshwater Biological Association Scientific Publication No. 36.Google Scholar
  20. Michard, M., L. Aleya & J. Verneaux, 1996. Mass occurrence of the Cyanobacteria Microcystis aeruginosa in the hypereutrophic Villerest Reservoir (Roanne, France): usefulness of the biyearly examination of N/P (nitrogen/phosphorus) and P/C (protein/carbohydrate) couplings. Archive für Hydrobiologie 135: 337–359.Google Scholar
  21. Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.CrossRefGoogle Scholar
  22. Newell, B. S., D. Morgan & J. Candy, 1967. The determination of urea in seawater. Journal of Marine Research 25: 201–202.Google Scholar
  23. Platt, T., C. L. Gallegos & W. G. Harrison, 1980. Photoinhibition of photosynthesis in natural assemblages of phytoplankton. Journal of Marine Research 38: 687–701.Google Scholar
  24. Pomogyi, P., 1991. Chemical, biological and nutrient flow studies in the Kis-Balaton system. Report on the Researches 1985–1991. West Transdanubian Water Authority, Szombathely (in Hungarian).Google Scholar
  25. Pomogyi, P., 1993a. Nutrient retention by the Kis-Balaton Water Protection System. Hydrobiologia 251: 309–320.CrossRefGoogle Scholar
  26. Pomogyi, P., 1993b. The Kis-Balaton water protection system as a tool improve the water quality of Lake Balaton. ILEC/UNEP International Training Course: 125–129.Google Scholar
  27. Présing, M., S. Herodek, L. Vörös & I. Kóbor, 1996. Nitrogen fixation, ammonium and nitrate uptake during a bloom of Cylindrospermopsis raciborskii in Lake Balaton. Archive für Hydrobiologie 136(4): 553–562.Google Scholar
  28. Présing, M., S. Herodek, L. Vörös, T. Preston & Gy. Abrusán, 1999. Nitrogen uptake by summer phytoplankton in Lake Balaton. Archive für Hydrobiologie 145: 93–110.Google Scholar
  29. Présing, M., S. Herodek, T. Preston & L. Vörös, 2001. Nitrogen uptake and the importance of internal nitrogen loading in Lake Balaton. Freshwater Biology 46: 125–139.Google Scholar
  30. Présing, M., T. Preston, A. Kovács, H. M. Shafik & Gy. Kenesi, 2005. The contribution of N2 fixation to the nitrogen supply of phytoplankton in Lake Balaton. Hidrológiai Közlöny 85: 177–179. (in Hungarian with English abstract).Google Scholar
  31. Redfield, A., 1958. The biological control of chemical factors in the environment. American Science 46: 205–221.Google Scholar
  32. Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.PubMedCrossRefGoogle Scholar
  33. Seip, K. L., 1994. Phosphorus and nitrogen limitation of algal biomass across trophic gradients. Aquatic Sciences 56: 16–28.CrossRefGoogle Scholar
  34. Smith, V. H., 1983. Low nitrogen to phosphorus ratios favour dominance by blue-green algae in lake phytoplankton. Science 221: 669–771.PubMedCrossRefGoogle Scholar
  35. Smith, V. H., 1987. Predicting the summer peak biomass of four species of blue-green algae (Cyanophyta/cyanobacteria) in Swedish lakes. Water Resources Bulletin 23: 397–402.CrossRefGoogle Scholar
  36. Szilágyi, F., L. Somlyódy & L. Koncsos, 1990. Operation of the Kis-Balaton reservoir: evaluation of nutrient removal rates. Hydrobiologia 191: 197–306.CrossRefGoogle Scholar
  37. Tátrai, I., K. Mátyás, J. Korponai, G. Paulovits & P. Pomogyi, 2000. The role of the Kis-Balaton Water Protection System in the control of water quality of Lake Balaton. Ecological Engineering 16(1): 73–78.CrossRefGoogle Scholar
  38. Tõnno, I. & T. Nõges, 2003. Nitrogen fixation in a large shallow lake: rates and initiation conditions. Hydrobiologia 490: 23–30.CrossRefGoogle Scholar
  39. Vörös, L. & K. V.-Balogh, 1997. Carbon cycle in Keszthely basin of Lake Balaton. Hidrológiai Közlöny 85: 385–386. (in Hungarian with English abstract).Google Scholar
  40. Wetzel, R. G., 1983. Limnology, 2nd ed. Sounders, Philadelphia.Google Scholar
  41. Willén, E., 1992. Long-term changes in the phytoplankton of large lakes in response to changes in nutrient loading. Nordic Journal of Botany 12: 575–587.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Hajnalka Horváth
    • 1
  • Kálmán Mátyás
    • 2
  • György Süle
    • 2
  • Mátyás Présing
    • 1
  1. 1.Centre for Ecological Research, Hungarian Academy of SciencesBalaton Limnological InstituteTihanyHungary
  2. 2.West-Transdanubian Water DirectorateKis-Balaton DepartmentKeszthelyHungary

Personalised recommendations