, Volume 702, Issue 1, pp 201–213 | Cite as

Nothing but a trace left? Autochthony and conservation status of Northern Adriatic Salmo trutta inferred from PCR multiplexing, mtDNA control region sequencing and microsatellite analysis

Primary Research Paper


Phylogeny of Northern Adriatic Salmo trutta is still not resolved, leading to taxonomic controversies and hindering reasonable conservation and fisheries management. We report on the genetic screening of 467 brown trout from 25 sites within Adige, Brenta and Po River drainage basins (Italy). Our main aim was to identify native (Adriatic) brown trout within the central part of the Northern Adriatic area. D-loop lineage screening evidenced a predominance of the Atlantic clade with a frequency of 0.87, followed by the Marmoratus clade with 0.11, and, finally, the Adriatic clade with a frequency of 0.02. The Adriatic clade was found exclusively in specimens from Pianetti River and was represented by haplotype Adcs1. However, microsatellite-based analysis of population structure within Pianetti River specimens failed to identify Adriatic brown trout, but pointed to a nuclear genomic replacement of the former by Atlantic strains. In conjunction with earlier phylogenetic studies, our results contrast with a present-day widespread distribution scenario of Adriatic brown trout within the Northern Adriatic region. From a conservation viewpoint, the punctiform occurrence of Adriatic haplotypes, their ambiguous provenance, and, finally, the presumable genomic replacement at the nuclear genetic level, might hinder reasonable conservation actions and call for revised fisheries management guidelines.


Salmo trutta Adriatic mtDNA Control region Microsatellites Salmonid conservation 



The present study was funded by the Autonomous Province of Trento in the frame of both the project “FARIO-PAT” (a joint project with the Fisheries Office of the Autonomous Province of Trento, “Ufficio Faunistico della Provincia Autonoma di Trento”) as well as the project ACE-SAP (regulation number 23, June 12th 2008, of the University and Scientific Research Service). The authors are thankful to the Fisheries Office of the Autonomous Provinces of Trento for the great accomplishment of sampling activities and their thorough collaboration. The authors thank Angelo di Matteo (Riserva Naturale Gole di San Venanzio), Giuliana Allegrucci and Valerio Sbordoni (University of Rome “Tor Vergata”) for making available the samples from San Venanzio Gorges and Günther Unfer (University of Vienna, BOKU) for assistance in reconstructing brown trout demography. In addition, we would like to thank Cristiano Vernesi, Andreas Riedl and David Neale for their constructive inputs and helpful comments. Finally, we are thankful to Giovanna Flaim for the linguistic revision of the manuscript.

Supplementary material

10750_2012_1321_MOESM1_ESM.pdf (285 kb)
Online resource 1 (PDF 285 kb)
10750_2012_1321_MOESM2_ESM.pdf (60 kb)
Online resource 2 (PDF 59 kb)


  1. Apostolidis, A. P., C. Triantaphyllidis, A. Kouvatsi & P. S. Economidis, 1997. Mitochondrial DNA sequence variation and phylogeography among Salmo trutta L. (Greek Brown Trout) populations. Molecular Ecology 6: 531–542.PubMedCrossRefGoogle Scholar
  2. Apostolidis, A. P., P. K. Apostolou, A. Georgiadis & R. Sandaltzopoulos, 2007. Rapid identification of Salmo trutta lineages by mutliplex PCR utilizing primers tailored to discriminate single nucleotide polymorphisms (SNPs) of the mitochondrial control region. Conservation Genetics 8: 1025–1028.CrossRefGoogle Scholar
  3. Baric, S., A. Riedl, A. Meraner, N. Medgyesy, R. Lackner, B. Pelster & J. Dalla Via, 2010. Alpine headwater streams as reservoirs of remnant populations of the Danubian clade of brown trout. Freshwater Biology 55: 866–880.CrossRefGoogle Scholar
  4. Behnke, R. J., 1986. Brown trout. Trout 27: 42–47.Google Scholar
  5. Belkhir, K., P. Borsa, J. Goudet, L. Chikhi & F. Bonhomme, 1999. GENETIX, logiciel sous Windows TM pour la genetique des populations. Laboratoire Genome et populations, CNRS UPR 9060, Universitè de Montpellier II, Montpellier, France.Google Scholar
  6. Bernatchez, L., 2001. The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution 55: 351–379.PubMedGoogle Scholar
  7. Cairney, M., J. B. Taggart & B. Høyheim, 2000. Characterization of microsatellite and minisatellite loci in Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Molecular Ecology 9: 2155–2234.CrossRefGoogle Scholar
  8. Caudron, A. & A. Champigneulle, 2011. Multiple electrofishing as a mitigate tool for removing nonnative Atlantic brown trout (Salmo trutta L.) threatening a native Mediterranean brown trout population. European Journal of Wildlife Research 57: 575–583.CrossRefGoogle Scholar
  9. Cortey, M., C. Pla & J. L. Garcia-Marin, 2004. Historical biogeography of Mediterranean trout. Molecular Phylogenetics and Evolution 33: 831–844.PubMedCrossRefGoogle Scholar
  10. Duftner, N., S. Weiss, N. Medgyesy & C. Sturmbauer, 2003. Enhanced phylogeographic information about Austrian brown trout populations derived from complete mitochondrial control region sequences. Journal of Fish Biology 62: 427–435.CrossRefGoogle Scholar
  11. Estoup, A., P. Presa, F. Krieg, D. Vaiman & R. Guyomard, 1993. (CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout). Heredity 71: 488–496.PubMedCrossRefGoogle Scholar
  12. Estoup, A., F. Rousset, Y. Michalakis, J. M. Cornuet, M. Adriamanga & R. Guyomard, 1998. Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta). Molecular Ecology 7: 339–353.PubMedCrossRefGoogle Scholar
  13. Evanno, G., S. Regnaut & J. Goudet, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611–2621.PubMedCrossRefGoogle Scholar
  14. Excoffier, L. & H. E. L. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.PubMedCrossRefGoogle Scholar
  15. Gandolfi, G., S. Zerunian, P. Torricelli & A. Marconato, 1991. I pesci delle acque interne italiane. Istituto Poligrafico dello Stato, Roma.Google Scholar
  16. Giuffra, E., L. Bernatchez & R. Guyomard, 1994. Mitochondrial control region and protein coding genes sequence variation among phenotypic forms of brown trout Salmo trutta from Northern Italy. Molecular Ecology 3: 161–171.PubMedCrossRefGoogle Scholar
  17. Granek, E. F., E. M. P. Madin, M. A. Brown, W. Figueira, D. S. Cameron, Z. Hogan, G. Kristianson, P. De Villiers, J. E. Williams, J. Post, S. Zahn & R. Arlinghaus, 2008. Engaging recreational fishers in management and conservation: global case studies. Conservation Biology 22: 1125–1134.PubMedCrossRefGoogle Scholar
  18. Gratton, P., G. Allegrucci & V. Sbordoni, 2007. Caratterizzazione genetica della popolazione. In Indagini sulle trote presenti nella Riserva Naturale Regionale Gole di San Venanzio. Edizioni Amaltea, Raiano (AQ), Italy: 25–41.Google Scholar
  19. Guo, S. W. & E. A. Thompson, 1992. Performing the exact test of Hardy–Weinberg proportions for multiple alleles. Biometrics 48: 361–372.PubMedCrossRefGoogle Scholar
  20. Jadan, M., R. Čož-Rakovac, N. Topić Popović & I. Strunjak-Perović, 2007. Presence of unexpected phylogenetic lineages of brown trout Salmo trutta L. in Gacka River, Croatia. Aquaculture Research 38: 1682–1685.CrossRefGoogle Scholar
  21. King, T. L., M. S. Eackles & B. H. Letcher, 2005. Microsatellite DNA markers for the study of Atlantic salmon (Salmo salar) kinship, population structure, and mixed-fishery analyses. Molecular Ecology Notes 5: 130–132.CrossRefGoogle Scholar
  22. Klemetsen, A., P. A. Amundsen, J. B. Dempson, B. Jonsson, N. Jonnson, M. F. O’Connell & E. Mortensen, 2003. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecology of Freshwater Fish 12: 1–59.CrossRefGoogle Scholar
  23. Knapp, R. A. & K. R. Matthews, 2004. Eradication of nonnative fish by gill netting from a small mountain lake in California. Restoration Ecology 6: 207–213.Google Scholar
  24. Kottelat, M. & J. Freyhof, 2007. Handbook of European Freshwater Fishes. Kottelat, Freyhof, Cornol and Berlin.Google Scholar
  25. Marconato, E., V. Ketmaier, M. A. Riva, T. Busatto, G. Maio, S. Salviati, F. Recchia, A. Colantoni, A. Basilavecchia & P. L. Difelice, 2006. Identificazione, conservazione e recupero del popolamento autoctono di trota di torrente nella provincia di Pescara. Biologia Ambientale 20: 109–115.Google Scholar
  26. Meraner, A., S. Baric, B. Pelster & J. Dalla Via, 2007. Trout (Salmo trutta) mitochondrial DNA polymorphism in the centre of the marble trout distribution area. Hydrobiologia 579: 337–349.CrossRefGoogle Scholar
  27. Meraner, A., S. Baric, B. Pelster & J. Dalla Via, 2010. Microsatellite DNA data point to extensive but incomplete admixture in a marble and brown trout hybridisation zone. Conservation Genetics 11: 985–998.CrossRefGoogle Scholar
  28. Nonnis Marzano, F., N. Corradi, R. Papa, J. Tagliavini & G. Gandolfi, 2003. Molecular evidence of introgression and loss of genetic variability in Salmo (trutta) macrostigma as a result of massive restocking of Apennine populations (Northern and Central Italy). Environmental Biology of Fishes 68: 349–356.Google Scholar
  29. Poteaux, C., F. Bonhomme & P. Berrebi, 1999. Microsatellite polymorphism and genetic impact of restocking in Mediterranean brown trout (Salmo trutta L.). Heredity 82: 645–653.PubMedCrossRefGoogle Scholar
  30. Pritchard, J., M. Stephens & P. Donnelly, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.PubMedGoogle Scholar
  31. Pujolar, J. M., A. N. Lucarda, M. Simonato & T. Patarnello, 2011. Restricted gene flow at the micro- and macro-geographic scale in marble trout based on mtDNA and microsatellite polymorphism. Frontiers in Zoology 8: 7.PubMedCrossRefGoogle Scholar
  32. Rasmussen, G., 1986. The population dynamics of brown trout (Salmo trutta, L.) in relation to year-class size. Polskie Archiwum Hydrobiologii 33: 489–508.Google Scholar
  33. Razpet, A., S. Marić, T. Parapot, V. Nikolić & P. Simonović, 2007. Re-evaluation of Salmo data by Gridelli (1936)—description of stocking, hybridization and repopulation in the River Soča basin. Italian Journal of Zoology 74: 63–70.CrossRefGoogle Scholar
  34. Rexroad III, C. E., R. L. Coleman, W. K. Hershberger & J. Killefer, 2002. Rapid communication: thirty-eight polymorphic microsatellite markers for mapping in rainbow trout. Journal of Animal Science 80: 541–542.PubMedGoogle Scholar
  35. Sanz, N., M. Cortey, C. Pla & J. L. Garcia-Marin, 2006. Hatchery introgression blurs ancient hybridization between brown trout (Salmo trutta) lineages as indicated by complementary allozymes and mtDNA markers. Biological Conservation 130: 278–289.CrossRefGoogle Scholar
  36. Slatkin, M. & L. Excoffier, 1996. Testing for linkage disequilibrium in genotypic data using the expectation-maximization algorithm. Heredity 76: 377–383.PubMedCrossRefGoogle Scholar
  37. Snoj, A., B. Marčeta, S. Sušnik, E. Melkič, V. Meglič & P. Dovč, 2002. The taxonomic status of the ‘sea trout’ from the north Adriatic Sea, as revealed by mitochondrial and nuclear DNA analysis. Journal of Biogeography 29: 1179–1185.CrossRefGoogle Scholar
  38. Splendiani, A., M. Giovannotti, P. Nisi Cerioni, M. L. Caniglia & V. Caputo, 2006. Phylogeographic inferences on the native brown trout mtDNA variation in central Italy. Italian Journal of Zoology 73: 179–189.CrossRefGoogle Scholar
  39. Storey, J. D., 2002. A direct approach to false discovery rates. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64: 479–498.CrossRefGoogle Scholar
  40. Sušnik, S., A. Snoj, J. Pohar & P. Dovč, 1997. The microsatellite marker (BFRO 002) characteristic for different geographically remote brown trout, Salmo trutta L., populations. Animal Genetics 28: 372.PubMedCrossRefGoogle Scholar
  41. Sušnik, S., S. Weiss, T. Odak, B. Delling, T. Treer & A. Snoj, 2007. Reticulate evolution: ancient introgression of the Adriatic brown trout mtDNA in softmouth trout Salmo obtusirostris (Teleostei: Salmonidae). Biological Journal of the Linnean Society 90: 139–152.CrossRefGoogle Scholar
  42. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin & D. G. Higgins, 1997. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882.PubMedCrossRefGoogle Scholar
  43. Van Houdt, J. K. J., J. Pinceel, M. C. Flamand, M. Briquet, E. Dupont, F. A. M. Volckaert & P. V. Baret, 2005. Migration barriers protect indigenous brown trout (Salmo trutta) populations from introgression with stocked hatchery fish. Conservation Genetics 6: 175–191.CrossRefGoogle Scholar
  44. Weiss, S., C. Schlötterer, H. Waidbacher & M. Jungwirth, 2001. Haplotype (mtDNA) diversity of brown trout Salmo trutta in tributaries of the Austrian Danube: massive introgression of Atlantic basin fish—by man or nature? Molecular Ecology 10: 1241–1246.PubMedCrossRefGoogle Scholar
  45. Zerunian, S., 2002. Condannati all’estinzione? Biodiversità, biologia, minacce e strategie di conservazione dei pesci d’acqua dolce indigeni in Italia. Edagricole, Bologna.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • A. Meraner
    • 1
  • P. Gratton
    • 1
  • F. Baraldi
    • 1
  • A. Gandolfi
    • 1
  1. 1.Department of Biodiversity and Molecular Ecology, Research and Innovation CentreFondazione Edmund MachSan Michele all’AdigeItaly

Personalised recommendations