Advertisement

Hydrobiologia

, Volume 702, Issue 1, pp 129–140 | Cite as

Microcrustacean assemblages in a large river: on the importance of the flow regime

  • Csaba Vadadi-Fülöp
Primary Research Paper

Abstract

Microcrustacean plankton was sampled in the Danube River just upstream and downstream of Budapest, a large city with considerable industrial and municipal discharges. I addressed the questions of whether (i) there is any longitudinal variation in the densities and community attributes of microcrustaceans, and (ii) how these relate to river flow and nutrient discharges. Microcrustacean densities and diversities varied significantly between upstream and downstream sites as well as between different hydrological phases. Densities recorded in high water upstream were comparable to those recorded downstream, densities in low water, however, were considerably higher downstream. High water was associated with increased densities and diversities. The number and relative abundance of tychoplanktonic species considerably increased in high water. All those findings suggest the importance of downstream transport from adjacent water bodies. Diversities did not experience a downstream decline, and the effects of waste water discharges cannot be detected irrespective of the flow regime. The results indicate that effects of waste waters are embedded within the river flow effect in such a way that the latter appears to mask the impact of nutrient loads. This study provides further evidence for the flow regime as a major driver of biodiversity in floodplain rivers.

Keywords

River flow Zooplankton Waste water Diversity Danube 

Notes

Acknowledgments

The author thanks Dr. Katalin Zsuga and Prof. Árpád Berczik for helpful comments on the research plan and providing assistance in identification of microcrustaceans. Anonymous pilots of the ferry boats greatly assisted sample taking both upstream and downstream of Budapest. Physico-chemical data were provided by the Environmental Authority (Közép-Duna-völgyi Környezetvédelmi, Természetvédelmi és Vízügyi Felügyelőség), discharge data were supplied by the Hungarian Environmental and Water Research Institute (VITUKI). Magdolna Makó and András Kasek (Budapest Sewage Works Ltd.) kindly provided data for industrial and municipal discharges. The author is indebted to György Jablonszky for helpful comments on the language of the manuscript and for creating the map of sampling sites. The author also thanks Tim Hague for improving the grammar of the manuscript.

References

  1. Acharya, K., J. D. Jack & P. A. Bukaveckas, 2005. Dietary effects on life history traits of riverine Bosmina. Freshwater Biology 50: 965–975.CrossRefGoogle Scholar
  2. Amoros, C., 1984. Crustacés cladocères, Introduction pratique a la systématique des organismes des eaux continentales francaises. Bulletin Mensuel de la Societe Linneenne de Lyon 53: 1–63.Google Scholar
  3. Arruda, J. A., G. R. Marzolf & R. T. Faulk, 1983. The role of suspended sediments in the nutrition of zooplankton in turbid reservoirs. Ecology 64: 1225–1235.CrossRefGoogle Scholar
  4. Baranyi, C., T. Hein, C. Holarek, S. Keckeis & F. Schiemer, 2002. Zooplankton biomass and community structure in a Danube River floodplain system: effects of hydrology. Freshwater Biology 47: 473–482.CrossRefGoogle Scholar
  5. Basu, B. K. & F. R. Pick, 1996. Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnology and Oceanography 41: 1572–1577.CrossRefGoogle Scholar
  6. Basu, B. K. & F. R. Pick, 1997. Phytoplankton and zooplankton development in a lowland, temperate river. Journal of Plankton Research 19: 237–253.CrossRefGoogle Scholar
  7. Berczik, A., 1965. Effects of the flow regime on the fauna of the Hungarian stretch of the Danube River (in Hungarian). Hidrológiai Közlöny 45: 233–236.Google Scholar
  8. Bonecker, C. C., S. L. C. Bonecker, R. L. Bozelli, F. A. Lansac-Toha & L. F. M. Velho, 1996. Zooplankton composition under the influence of liquid wastes from a pulp mill in middle Doce River (Belo Oriente, MG, Brazil). Arquivos de Biologia e Technologia 39: 893–901.Google Scholar
  9. Bothár, A., 1988. Results of long-term zooplankton investigations in the River Danube, Hungary. Verhandlung Internationale Vereinigung Limnologie 23: 1340–1343.Google Scholar
  10. Bothár, A., 1994. Qualitative und quantitative Planktonuntersuchungen in der Donau bei Göd/Ungarn (1669 Strom km) II. Zooplankton. 30. Arbeitstagung der IAD, Zuoz/Schweiz, Wissenschaftliche Kurzreferate: 41–44.Google Scholar
  11. Casper, A. F. & J. H. Thorp, 2007. Diel and lateral patterns of zooplankton distribution in the St. Lawrence River. River Research and Applications 23: 73–85.CrossRefGoogle Scholar
  12. Efron, B., 1979. Bootstrap methods: another look at the jackknife. Annals of Statistics 7: 1–25.CrossRefGoogle Scholar
  13. Efron, B. & R. Tibshirani, 1993. An introduction to the bootstrap. Chapman & Hall, London.Google Scholar
  14. Einsle, U., 1993. Crustacea, Copepoda: Calanoida und Cyclopoida. In Schwoerbel, J. & P. Zwick (eds), Süsswasserfauna von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, Bd. 8, Heft 4, Teil 1.Google Scholar
  15. Frutos, S. M., A. S. G. Poi de Neiff & J. J. Neiff, 2006. Zooplankton of the Paraguay River: a comparison between sections and hydrological phases. Annales de Limnologie – International Journal of Limnology 42: 277–288.CrossRefGoogle Scholar
  16. Gagneten, A. M. & J. C. Paggi, 2009. Effects of heavy metal contamination (Cr, Cu, Pb, Cd) and eutrophication on zooplankton in the lower basin of the Salado River (Argentina). Water Air and Soil Pollution 198: 317–334.CrossRefGoogle Scholar
  17. Gulyás, P., 1994. Studies on the Rotatorian and Crustacean plankton in the Hungarian section of the Danube between 1848.4 and 1659.0 riv. km. In Kinzelbach, R. (ed.), Biologie der Donau. Gustav Fischer, Stuttgart: 49–61.Google Scholar
  18. Gulyás, P., 1997. Untersuchungen des Rotatoria- und Crustacea-Planktons an der Donaustrecke unterhalb Budapest sowie im Donauarm Ráckevei-Soroksári Duna (RSD). 32. Konferenz der IAD, Wien – Österreich 1997, Wissenschaftliche Referate: 265–270.Google Scholar
  19. Gulyás, P. & L. Forró, 1999. Identification key for Cladocera (in Hungarian), 2nd edition. Vízi Természet- és Környezetvédelem 9, Környezetgazdálkodási Intézet.Google Scholar
  20. Gulyás, P. & L. Forró, 2001. Identification key for Copepoda (suborders Calanoida and Cyclopoida) (in Hungarian), 2nd edition. Vízi Természet- és Környezetvédelem 14, Környezetgazdálkodási Intézet.Google Scholar
  21. Hammer, O. D., A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Paleontologia Electronica 4: 1–9.Google Scholar
  22. Hart, R. C., 1988. Zooplankton feeding rates in relation to suspended sediment content: potential influences on community structure in a turbid reservoir. Freshwater Biology 19: 123–139.CrossRefGoogle Scholar
  23. Hynes, H. B. N., 1970. The Ecology of Running Waters. Liverpool University Press, Liverpool.Google Scholar
  24. Jack, J. D., W. Fang & J. H. Thorp, 2006. Vertical, lateral and longitudinal movement of zooplankton in a large river. Freshwater Biology 51: 1646–1654.CrossRefGoogle Scholar
  25. Kalafatic, V., 1984. Untersuchungen des Zooplanktons der Donau im Berich der Abwassereinleitung des petrochemischen Industriezentrums bei Pancevo. 24. Arbeitstagung der IAD, Szentendre/Ungarn, Wissenschaftliche Kurzreferate 1: 101–103.Google Scholar
  26. Kim, H. W. & G. J. Joo, 2000. The longitudinal distribution and community dynamics of zooplankton in a regulated large river: a case study of the Nakdong River (Korea). Hydrobiologia 438: 171–184.CrossRefGoogle Scholar
  27. Kiss, K. T., 1994. Trophic level and eutrophication of the River Danube in Hungary. Verhandlung Internationale Vereinigung Limnologie 25: 1688–1691.Google Scholar
  28. Kiss, K. T. & S. I. Genkal, 1993. Winter blooms of centric diatoms in the River Danube and in its side-arms near Budapest (Hungary). Hydrobiologia 269–270: 317–325.CrossRefGoogle Scholar
  29. Kobayashi, T., R. J. Shiel, P. Gibbs & P. I. Dixon, 1998. Freshwater zooplankton in the Hawkesbury–Nepean River: comparison of community structure with other rivers. Hydrobiologia 377: 133–145.CrossRefGoogle Scholar
  30. Maria-Heleni, Z., E. Michaloudi, D. C. Bobori & S. Mourelatos, 2000. Zooplankton abundance in the Aliakmon River, Greece. Belgian Journal of Zoology 130: 29–33.Google Scholar
  31. Marneffe, Y., J. P. Descy & J. P. Thomé, 1996. The zooplankton of the lower river Meuse, Belgium: seasonal changes and impact of industrial and municipal discharges. Hydrobiologia 319: 1–13.CrossRefGoogle Scholar
  32. Naidenow, W. & D. Saiz, 1985. Der Einfluss der Abwässer aus dem Gebiet von Russe (Bulgarien) auf die Entwicklung des Donauplanktons. Verlag Bulgarische Akademie der Wissenschaften, Sofia: 103–112.Google Scholar
  33. Olguin, H. F., A. Puig, C. R. Loez, A. Salibian, M. L. Topalian, P. M. Castane & M. G. Rovedatti, 2004. An integration of water physicochemistry, algal bioassays, phytoplankton, and zooplankton for ecotoxicological assessment in a highly polluted lowland river. Water Air and Soil Pollution 155: 355–381.CrossRefGoogle Scholar
  34. Onwudinjo, C. C. & A. B. M. Egborge, 1994. Rotifers of Benin River, Nigeria. Hydrobiologia 272: 87–94.CrossRefGoogle Scholar
  35. Pace, M. L., S. E. G. Findlay & D. Lints, 1992. Zooplankton in advective environments: the Hudson River community and a comparative analysis. Canadian Journal of Fisheries and Aquatic Sciences 49: 1060–1069.CrossRefGoogle Scholar
  36. Paggi, S. J. & J. C. Paggi, 2007. Zooplankton. In Iriondo, M. H., J. C. Paggi & M. J. Parma (eds), The Middle Paraná River. Limnology of a Subtropical Wetland. Springer, Heidelberg: 229–249.Google Scholar
  37. Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. The natural flow regime. BioScience 47: 769–784.CrossRefGoogle Scholar
  38. Reckendorfer, W., H. Keckeis, G. Winkler & F. Schiemer, 1999. Zooplankton abundance in the River Danube, Austria: the significance of inshore retention. Freshwater Biology 41: 583–591.CrossRefGoogle Scholar
  39. Richardson, W. B., 1992. Microcrustacea in flowing water: experimental analysis of washout times and a field test. Freshwater Biology 28: 217–230.CrossRefGoogle Scholar
  40. Rossetti, G., P. Viaroli & I. Ferrari, 2009. Role of abiotic and biotic factors in structuring the metazoan plankton community in a lowland river. River Research and Applications 25: 814–835.CrossRefGoogle Scholar
  41. Sabri, A. W., Z. H. Ali, S. F. Shawkat, L. A. Thejar, T. I. Kassim & K. A. Rasheed, 1993. Zooplankton population in the river Tigris – effects of Samarra impoundment. Regulated Rivers: Research and Management 8: 237–250.CrossRefGoogle Scholar
  42. Saunders, J. F. & W. M. Lewis, 1988. Zooplankton abundance and transport in a tropical white-water river. Hydrobiologia 162: 147–155.CrossRefGoogle Scholar
  43. Saunders, J. F. & W. M. Lewis, 1989. Zooplankton abundance in the lower Orinoco River, Venezuela. Limnology and Oceanography 34: 397–409.CrossRefGoogle Scholar
  44. Schagerl, M., I. Drozdowski, D. G. Angeler, T. Hein & S. Preiner, 2009. Water age – a major factor controlling phytoplankton community structure in a reconnected dynamic floodplain (Danube, Regelsbrunn, Austria). Journal of Limnology 68: 274–287.CrossRefGoogle Scholar
  45. Schiemer, F., H. Keckeis, W. Reckendorfer & G. Winkler, 2001. The ‘inshore retention concept’ and its significance for large rivers. Large Rivers 12: 509–516.Google Scholar
  46. Soballe, D. M. & B. L. Kimmel, 1987. A large-scale comparison of factors influencing phytoplankton abundance in rivers, lakes, and impoundments. Ecology 68: 1943–1954.CrossRefGoogle Scholar
  47. Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.CrossRefGoogle Scholar
  48. Thorp, J. H., A. R. Black, K. H. Haag & J. D. Wehr, 1994. Zooplankton assemblages in the Ohio River: seasonal, tributary, and navigation dam effects. Canadian Journal of Fisheries and Aquatic Sciences 51: 1634–1643.CrossRefGoogle Scholar
  49. Vadadi-Fülöp, C., 2009. Zooplankton (Cladocera, Copepoda) dynamics in the River Danube upstream and downstream of Budapest, Hungary. Opuscula Zoologica Budapest 40: 87–98.Google Scholar
  50. Vadadi-Fülöp, C., L. Hufnagel, G. Jablonszky & K. Zsuga, 2009. Crustacean plankton abundance in the Danube River and in its side arms in Hungary. Biologia 64: 1184–1195.CrossRefGoogle Scholar
  51. Verasztó, C., K. T. Kiss, C. Sipkay, L. Gimesi, C. Vadadi-Fülöp, D. Türei & L. Hufnagel, 2010. Long-term dynamic patterns and diversity of phytoplankton communities in a large eutrophic river (the case of River Danube, Hungary). Applied Ecology and Environmental Research 8: 329–349.Google Scholar
  52. Viroux, L., 1999. Zooplankton distribution in flowing waters and its implications for sampling: case studies in the River Meuse (Belgium) and the River Moselle (France, Luxembourg). Journal of Plankton Research 21: 1231–1248.CrossRefGoogle Scholar
  53. Viroux, L., 2002. Seasonal and longitudinal aspects of microcrustacean (Cladocera, Copepoda) dynamics in a lowland river. Journal of Plankton Research 24: 281–292.CrossRefGoogle Scholar
  54. Vörös, L., K. V. Balogh, S. Herodek & K. T. Kiss, 2000. Underwater light conditions, phytoplankton photosynthesis and bacterioplankton production in the Hungarian section of the River Danube. Archiv für Hydrobiologie 11: 511–532.Google Scholar
  55. Wahl, D. H., J. Goodrich, M. A. Nannini, J. M. Dettmers & D. A. Soluk, 2008. Exploring riverine zooplankton in three habitats of the Illinois River ecosystem: where do they come from? Limnology and Oceanography 53: 2583–2593.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Life SciencesHungarian Scientific Research Fund OfficeBudapestHungary

Personalised recommendations