, Volume 704, Issue 1, pp 97–113 | Cite as

Phytoplankton indicator taxa for reference conditions in Northern and Central European lowland lakes

  • Marko Järvinen
  • Stina Drakare
  • Gary Free
  • Anne Lyche-Solheim
  • Geoff Phillips
  • Birger Skjelbred
  • Ute Mischke
  • Ingmar Ott
  • Sandra Poikane
  • Martin Søndergaard
  • Agnieszka Pasztaleniec
  • Jeroen Van Wichelen
  • Robert Portielje


Phytoplankton data from 606 lakes were used to characterize indicator taxa of near-pristine reference conditions in clearwater and humic lowland lakes of Northern and Central Europe. Reference lakes were selected based on low pressure from catchment land-use, low population density and the absence of point sources. Reference lakes had low phytoplankton biomass and taxa richness compared to non-reference lakes. In low alkalinity lakes of Northern Europe, the reference communities had high biomass proportions of chrysophytes and low proportions of cyanobacteria; in the Central European high alkalinity lakes, the biomass was distributed more evenly among algal groups. Indicator species analysis and similarity analysis listed 5–29 taxa indicating reference conditions. Indicator taxa differed especially between the low alkalinity and the high alkalinity lakes, but there were also country-specific differences. Most common indicator taxa for the northern reference lakes were chrysophytes (e.g. Bitrichia, Dinobryon). In the Central European reference lakes, diatoms (e.g. Cyclotella) were more characteristic. Despite the differences, there was a general finding that taxa present in reference lakes were often also present in non-reference lakes, but typically in lower biomass proportions; another characteristic of the reference communities is the absence of many taxa typically found in non-reference lakes.


Phytoplankton assemblages Algal indicators Eutrophication Indicator species analysis Europe Water framework directive Freshwater ecosystems 



The paper is a result of the project WISER (Water bodies in Europe: Integrative Systems to assess Ecological status and Recovery) funded by the European Union under the 7th Framework Programme, Theme 6 (Environment including Climate Change) (contract No. 226273). We would like to thank Jannicke Moe and Bernard Dudley who supported data management and extraction and especially all the data providers: Northern GIG (Data manager: Geoff Phillips, EA, UK): Finnish Environment Institute (SYKE), Swedish University of Agricultural Sciences (SLU), Norwegian Institute for Water Research (NIVA), Scottish Environment Protection Agency (SEPA), the Environment Agency for England & Wales (EA), Environment Protection Agency (EPA, Ireland). Central-Baltic GIG (Data manager: Ute Mischke, IGB, Germany): Estonian University of Life Sciences (EMU), Estonian Ministry of Environment, Latvian Environment, Geology and Meteorology Centre, EPA Lithuania, National Environmental Research Institute, University of Aarhus Denmark, Ghent University (UGENT, Belgium), Rijkswaterstaat (RWS, the Netherlands), the Institute of Environmental Protection—National Research Institute, and The Inspection for Environmental Protection (Poland), and the following institutions of the German Federal States: Landesamt für Umwelt, Gesundheit und Verbraucherschutz Brandenburg (LUGV), Ministerium für Landwirtschaft, Umwelt und Verbraucherschutz Mecklenburg-Vorpommern (MLUV, Seenprogramm), Landesbetrieb für Hochwasserschutz und Wasserwirtschaft Sachsen-Anhalt (LHW), Landesamt für Landwirtschaft, Umwelt und ländliche Räume Schleswig–Holstein (LLUR), Senatsverwaltung für Gesundheit, Soziales und Verbraucherschutz Berlin (SenGUV), Niedersächsische Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN, Sulingen).

Supplementary material

10750_2012_1315_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 24 kb)


  1. Bird, D. F. & J. Kalff, 1987. Algal phagotrophy: regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnology and Oceanography 32: 277–284.CrossRefGoogle Scholar
  2. Brettum, P. & T. Andersen, 2005. The use of phytoplankton as indicators of water quality. NIVA-Report SNO 4818-2004. 33 pp. (+164 pp. of fact sheets).Google Scholar
  3. Cardoso, A. C., G. Free, P. Nõges, Ø. Kaste, S. Poikane & A. Lyche Solheim, 2009. Lake management criteria. In Likens, G. E. (ed.), Encyclopedia of Inland Waters, Vol. 1. Elsevier, Oxford: 310–331.CrossRefGoogle Scholar
  4. Carvalho, L., A. Solimini, G. Phillips, M. van den Berg, O.-P. Pietiläinen, A. Lyche Solheim, S. Poikane & U. Mischke, 2008. Chlorophyll reference conditions for European lake types used for intercalibration of ecological status. Aquatic Ecology 42: 203–211.CrossRefGoogle Scholar
  5. Carvalho, L., S. Poikane, A. Lyche Solheim, G. Phillips, G. Borics, J. Catalan, C. De Hoyos, S. Drakare, B. J. Dudley, M. Järvinen, C. Laplace-Treyture, K. Maileht, C. McDonald, U. Mischke, J. Moe, G. Morabito, P. Nõges, T. Nõges, I. Ott, A. Pasztaleniec, B. Skjelbred & S. J. Thackeray, 2012. Strength and uncertainty of lake phytoplankton metrics for assessing eutrophication impacts in lakes. Hydrobiologia. doi: 10.1007/s10750-012-1344-1
  6. CEN, 2006. Water quality—Guidance on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique).Google Scholar
  7. Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.CrossRefGoogle Scholar
  8. Dokulil, M. T., 2003. Algae as ecological bio-indicators. In Markert, B. A., A. M. Breure & H. G. Zechmeister (eds), Bioindicators and Biomonitors. Elsevier Science Ltd, New York: 285–327.CrossRefGoogle Scholar
  9. Dufrene, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.Google Scholar
  10. ECOSTAT, 2010. Guidance document on the Intercalibration Process 2008–2011. European Commission. 102 pp.Google Scholar
  11. European Commission, 2008. Commission Decision of 30 October 2008 establishing, pursuant to Directive 2000/60/EC of the European Parliament and of the Council, the values of the Member State monitoring system classifications as a result of the intercalibration exercise. Official Journal of the European Union, L332: 20–44.Google Scholar
  12. European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities L327: 1–72.Google Scholar
  13. Heinonen, P., 1980. Quantity and composition of phytoplankton in Finnish inland waters. Publications of the Water Research Institute 37: 91Google Scholar
  14. Hering, D., A. Borja, L. Carvalho & C. K. Feld, 2012: Assessment and recovery of European water bodies: key messages from the WISER project. Hydrobiologia, this issue.Google Scholar
  15. Hörnström, E., 1981. Trophic characterization of lakes by means of qualitative phytoplankton analysis. Limnologica 13: 249–361.Google Scholar
  16. Jones, R. I., 2000. Mixotrophy in planktonic protists: an overview. Freshwater Biology 45: 219–226.CrossRefGoogle Scholar
  17. Järnefelt, H., 1952. Plankton als Indikator der Trophiegruppen der Seen. Annales Academiae Scientiarum Fennicae A IV 18: 1–29.Google Scholar
  18. Kelly, M. G., C. Gomez-Rodriguez, M. Kahlert, S. F. P. Almeida, C. Bennett, M. Bottin, F. Delmas, J.-P. Descy, G. Dorflinger, B. Kennedy, P. Marvan, L. Opatrilova, I. Pardo, P. Pfister, J. Rosebery, S. Schneider & S. Vilbaste, 2012. Establishing expectations for pan-European diatom based ecological status assessments. Ecological Indicators 20: 177–186.CrossRefGoogle Scholar
  19. Leira, M., P. Jordan, D. Taylor, C. Dalton, H. Bennion, N. Rose & K. Irvine, 2006. Assessing the ecological status of candidate reference lakes in Ireland using palaeolimnology. Journal of Applied Ecology 43: 816–827.CrossRefGoogle Scholar
  20. Lepistö, L., 1999. Phytoplankton assemblages reflecting the ecological status of lakes in Finland. Monographs of the Boreal Environment Research 16, Helsinki. 43 pp.Google Scholar
  21. Lepistö, L., A.-L. Holopainen & H. Vuoristo, 2004. Type-specific and indicator taxa of phytoplankton as a quality criterion for assessing the ecological status of Finnish boreal lakes. Limnologica 34: 236–248.CrossRefGoogle Scholar
  22. Lyche, A., 1990. Cluster analysis of plankton community structure in 21 lakes along a gradient of trophy. Internationale Vereinigung für Theoretische und Angewandte Limnologie 24: 586–591.Google Scholar
  23. Maileht, K., T. Nõges, P. Nõges, I. Ott, U. Mischke, L. Carvalho & B. Dudley, 2012. Water colour, phosphorus and alkalinity are the major determinants of the dominant phytoplankton species in European lakes. Hydrobiologia. doi: 10.1007/s10750-012-1348-x
  24. McCune, B. & M. J. Mefford, 1999. PC-ORD multivariate analysis ecological data, version 4, MjM Software Design. Gleneden Beach, Oregon.Google Scholar
  25. Mills, K. H. & D. W. Schindler, 1986. Biological indicators of lake acidification. Water Air and Soil Pollution 30: 779–789.CrossRefGoogle Scholar
  26. Mischke, U., U. Riedmüller, E. Hoehn, I. Schönfelder & B. Nixdorf, 2008. Description of the German system for phytoplankton-based assessment of lakes for implementation of the EU Water Framework Directive (WFD). Gewässereport 10, Aktuelle Reihe 2/2008: 117–146. Bad Saarow, Freiburg. Univ. Cottbus, Lehrstuhl Gewässerschutz.Google Scholar
  27. Moe, S. J., B. Dudley & R. Ptacnik, 2008. REBECCA databases: experiences from compilation and analyses of monitoring data from 5000 lakes in 20 European countries. Aquatic Ecology 42: 183–201.CrossRefGoogle Scholar
  28. Moe, S. J., A. Schmidt-Kloiber, B.-J. Dudley & D. Hering, 2012. The WISER way of organising ecological data from European rivers, lakes, transitional and coastal waters. Hydrobiologia. doi: 10.1007/s10750-012-1337-0
  29. Nygaard, K. & A. Tobiesen, 1993. Bacterivory in algae: a survival strategy during nutrient limitation. Limnology and Oceanography 38: 273–279.CrossRefGoogle Scholar
  30. OECD, 1982. Eutrophication of waters: monitoring, assessment and control. Organisation of Economic Co-operation and Development, Paris: 154.Google Scholar
  31. Olrik, K., P. Blomqvist, P. Brettum, G. Cronberg & P. Eloranta, 1998. Methods for quantitative assessment of phytoplankton in freshwaters, part 1. Naturvårdsverket, Stockholm: 86.Google Scholar
  32. Phillips, G., O.-P. Pietiläinen, L. Carvalho, A. Solimini, A. Lyche Solheim & C. Cardoso, 2008. Chlorophyll-nutrient relationships of different lake types using a large European dataset. Aquatic Ecology 42: 213–226.CrossRefGoogle Scholar
  33. Phillips, G., G. Morabito, L. Carvalho, A. Lyche Solheim, B. Skjelbred, J. Moe, T. Andersen, U. Mischke, C. de Hoyos & G. Borics, 2010. WISER Deliverable D3.1-1: Report on lake phytoplankton composition metrics, including a common metric approach for use in intercalibration by all GIGs: 61. http://www.wiser.eu/results/deliverables/.
  34. Phillips, G., A. Lyche-Solheim, B. Skjelbred, U. Mischke, S. Drakare, G. Free, M. Järvinen, C. de Hoyos, G. Morabito, S. Poikane & L. Carvalho, 2012. A phytoplankton trophic index to assess the status of lakes for the Water Framework Directive. Hydrobiologia, this issue.Google Scholar
  35. Poikãne, S., 2009. Water framework directive intercalibration technical report: Part 2: Lakes. JRC Scientific and Technical Reports, EUR 23838 EN/2-2009. 176 pp. doi: 10.2788/23415.
  36. Poikãne, S., M. H. Alves, C. Argillier, M. van den Berg, F. Buzzi, E. Hoehn, C. de Hoyos, I. Karottki, C. Laplace-Treyture, A. Lyche Solheim, J. Ortiz-Casas, I. Ott, G. Phillips, A. Pilke, J. Pádua, S. Remec-Rekar, U. Riedmüller, J. Schaumburg, M. L. Serrano, H. Soszka, D. Tierney, G. Urbanič & G. Wolfram, 2010. Defining chlorophyll-a reference conditions in European lakes. Environmental Management 45: 1286–1298.PubMedCrossRefGoogle Scholar
  37. Ptacnik, R., L. Lepistö, E. Willén, P. Brettum, T. Andersen, S. Rekolainen, A. Lyche Solheim & L. Carvalho, 2008. Quantitative responses of lake phytoplankton to eutrophication in Northern Europe. Aquatic Ecology 42: 227–236.CrossRefGoogle Scholar
  38. Ptacnik, R., A. Solimini & P. Brettum, 2009. Performance of a new phytoplankton composition metric along a eutrophication gradient in Nordic lakes. Hydrobiologia 633: 75–82.CrossRefGoogle Scholar
  39. Rawson, D. S., 1956. Algal indicators of trophic lake types. Limnology and Oceanography 1: 18–25.CrossRefGoogle Scholar
  40. Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  41. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  42. Salonen, K., R. I. Jones & L. Arvola, 1984. Hypolimnetic phosphorus retrieval by diel vertical migrations of lake phytoplankton. Freshwater Biology 14: 431–438.CrossRefGoogle Scholar
  43. Solimini, A. G., A. C. Cardoso & A. S. Heiskanen (eds) 2006. Indicators and methods for the ecological status assessment under the Water Framework Directive. Linkages between chemical and biological quality of surface waters. European Commission: 248Google Scholar
  44. Stewart, A. J. & R. G. Wetzel, 1986. Cryptophytes and other microflagellates as couplers in planktonic community dynamics. Archiv für Hydrobiologie 106: 1–19.Google Scholar
  45. Taylor, D., C. Dalton, M. Leira, P. Jordan, G. Chen, L. León-Vintró, K. Irvine, H. Bennion & T. Nolan, 2006. Recent histories of six productive lakes in the Irish Ecoregion based on multiproxy palaeolimnological evidence. Hydrobiologia 571: 237–259.CrossRefGoogle Scholar
  46. Tolotti, M., L. Forsström, G. Morabito, B. Thaler, M. Stoyneva, M. Cantonati, M. Šiško & A. Lotter, 2009. Biogeographical characterization of phytoplankton assemblages in high altitude, and high latitude European lakes. Advances in Limnology 62: 55–75.Google Scholar
  47. Utermöhl, H., 1958. Zur Vervollkommnung der quantitatieven Phytoplankton-Methodik. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1–39.Google Scholar
  48. Vuorio, K., L. Lepistö & A.-L. Holopainen, 2007. Intercalibrations of freshwater phytoplankton analyses. Boreal Environment Research 12: 561–569.Google Scholar
  49. Willén, E., 1992. Long-term changes in the phytoplankton of large lakes in response to changes in nutrient loading. Nordic Journal of Botany 12: 577–587.CrossRefGoogle Scholar
  50. Willén, E., 2003. Dominance patterns of planktonic algae in Swedish forest lakes. Hydrobiologia 502: 315–324.CrossRefGoogle Scholar
  51. Willén, E., 2007. Växtplankton i sjöar, bedömningsgrunder. SLU: Institutionen för Miljöanalys, Rapport No. 5, 2007. 33 pp.Google Scholar
  52. Wolfram, G., C. Argillier, J. de Bortoli, F. Buzzi, A. Dalmiglio, M. T. Dokulil, E. Hoehn, A. Marchetto, P.-J. Martinez, G. Morabito, M. Reichmann, S. Remec-Rekar, U. Riedmüller, C. Rioury, J. Schaumburg, L. Schulz & G. Urbanic, 2009. Reference conditions and WFD compliant class boundaries for phytoplankton biomass and chlorophyll-a in Alpine lakes. Hydrobiologia 633: 45–58.CrossRefGoogle Scholar
  53. Wunsam, S., R. Schmidt & R. Klee, 1995. Cyclotella-taxa (Bacillariophyceae) in lakes of the Alpine region and their relationship to environmental variables. Aquatic Sciences 57: 360–386.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Marko Järvinen
    • 1
  • Stina Drakare
    • 2
  • Gary Free
    • 3
  • Anne Lyche-Solheim
    • 4
  • Geoff Phillips
    • 5
  • Birger Skjelbred
    • 4
  • Ute Mischke
    • 6
  • Ingmar Ott
    • 7
  • Sandra Poikane
    • 8
  • Martin Søndergaard
    • 9
  • Agnieszka Pasztaleniec
    • 10
  • Jeroen Van Wichelen
    • 11
  • Robert Portielje
    • 12
  1. 1.Freshwater Centre, The Jyväskylä OfficeFinnish Environment Institute (SYKE)JyväskyläFinland
  2. 2.Department of Aquatic Sciences and AssessmentSwedish University of Agricultural Sciences (SLU)UppsalaSweden
  3. 3.Environmental Protection Agency, RichviewDublinIreland
  4. 4.Norwegian Institute for Water Research (NIVA)OsloNorway
  5. 5.South East Regional OfficeEnvironment Agency (EA)ReadingUK
  6. 6.Department of Shallow Lakes and Lowland RiversLeibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
  7. 7.Institute of Agricultural and Environmental Sciences, Centre for LimnologyEstonian University of Life SciencesRannu ParishEstonia
  8. 8.Institute for Environment and SustainabilityEC Joint Research CentreIspraItaly
  9. 9.Department of BioscienceAarhus UniversitySilkeborgDenmark
  10. 10.Department of Monitoring and Freshwater Assessment MethodsInstitute of Environmental Protection—National Environmental InstituteWarsawPoland
  11. 11.Research Group Protistology and Aquatic Ecology, Department of BiologyGhent UniversityGhentBelgium
  12. 12.Rijkswaterstaat Centre for Water ManagementLelystadThe Netherlands

Personalised recommendations