Advertisement

Hydrobiologia

, Volume 696, Issue 1, pp 185–198 | Cite as

Littoral age 0+ fish distribution in relation to multi-scale spatial heterogeneity of a deep-valley reservoir

  • Michal Kratochvíl
  • Tomáš Mrkvička
  • Mojmír Vašek
  • Jiří Peterka
  • Martin Čech
  • Vladislav Draštík
  • Tomáš Jůza
  • Josef Matěna
  • Milan Muška
  • Jaromír Sed’a
  • Petr Znachor
  • Jan Kubečka
Primary Research Paper

Abstract

Littoral age 0+ fish were studied with respect to spatio-temporal heterogeneity in the deep-valley Římov Reservoir (Czech Republic) from June to October 2007 using point abundance sampling by electrofishing. The abundance and diversity of age 0+ fish in different types of littoral habitats were examined along the longitudinal gradient of the reservoir during daytime. The impact of some physical attributes of the studied littoral habitats, e.g. slope steepness and substrate size, along with the season was the main factors affecting the distribution of age 0+ fish. The level of structural complexity was not a strong determinant, because the overall diversity and structural complexity of the available littoral habitats were relatively too low to have greater impact on the age 0+ fish distribution. The physical factors markedly influenced the spatial segregation between the two most important taxa in the reservoir—percids and cyprinids. Perch was the only representative of age 0+ percids in the littoral zone, which occupied steep-sloped habitats early in the season. In contrast, gently sloped habitats were mainly occupied by cyprinids later in the season. Species diversity was reflected in the occurrence of age 0+ cyprinids, achieving a maximum in gently sloped habitats in October. The effect of the longitudinal gradients on age 0+ fish distribution and diversity was generally far less significant, but was rather decisive during the period of a pronounced longitudinal trophic gradient during the summer season.

Keywords

Habitat preference Electrofishing Growing season Slope steepness Percids Cyprinids 

Notes

Acknowledgments

We are much obliged to Mr. Zdeněk Prachař for doing the really tough work while he was rowing several kilometres of the reservoir shoreline each month. Andrea Caháková helped with localization of littoral habitats, Jana Zemanová provided zooplankton analyses and Dr. Hassan Hashimi kindly checked English. The authors also thank two anonymous referees and Dr. David Hoeinghaus for helpful comments to the manuscript. This study was supported by project nos. 42/2006/P-BF and 145/2010/P of the Grant Agency of the University of South Bohemia, NAZV QH8 1046 of the National Agency for Agricultural Research and AVOZ 60170517 of the Academy of Sciences of the Czech Republic.

References

  1. Baruš, V. & M. Prokeš, 1996. Fecundity of the bleak (Alburnus alburnus) in the Mostiště Reservoir, Czech Republic. Folia Zoologica 45: 325–330.Google Scholar
  2. Brosse, S. & S. Lek, 2000a. Linear and non-linear methods to predict the microhabitat of 0+ roach (Rutilus rutilus L.) in the littoral zone of a large reservoir. Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 27: 811–814.Google Scholar
  3. Brosse, S. & S. Lek, 2000b. Ontogenetic microhabitat shifts of 0+ rudd (Scardinius erythrophthalmus L.) in the littoral zone of a mesotrophic lake. Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 27: 2063–2065.Google Scholar
  4. Brosse, S. & S. Lek, 2002. Relationships between environmental characteristics and the density of age-0 Eurasian perch Perca fluviatilis in the littoral zone of a lake: a nonlinear approach. Transactions of the American Fisheries Society 131: 1033–1043.CrossRefGoogle Scholar
  5. Brosse, S., G. D. Grossman & S. Lek, 2007. Fish assemblage patterns in the littoral zone of a European reservoir. Freshwater Biology 52: 448–458.CrossRefGoogle Scholar
  6. Bryan, M. D. & D. L. Scarnecchia, 1992. Species richness, composition, and abundance of fish larvae and juveniles inhabiting natural and developed shorelines of a glacial Iowa Lake. Environmental Biology of Fishes 35: 329–341.CrossRefGoogle Scholar
  7. Čech, M., M. Kratochvíl, J. Kubečka, V. Draštík & J. Matěna, 2005. Diel vertical migrations of bathypelagic perch fry. Journal of Fish Biology 66: 685–702.CrossRefGoogle Scholar
  8. Child, D., 1973. The Essentials of Factor Analysis. Holt, Rinehart & Winston, London.Google Scholar
  9. Copp, G. H., 2010. Patterns of diel activity and species richness in young and small fishes of European streams: a review of 20 years of point abundance sampling by electrofishing. Fish and Fisheries 11: 439–460.CrossRefGoogle Scholar
  10. Copp, G. H. & M. Peňáz, 1988. Ecology of fish spawning and nursery zones in the flood plain, using a new sampling approach. Hydrobiologia 169: 209–224.CrossRefGoogle Scholar
  11. Dembski, S., G. Masson, P. Wagner & J. C. Pihan, 2008. Habitat use by YOY in the littoral zone of an artificially heated reservoir. International Review of Hydrobiology 93: 243–255.CrossRefGoogle Scholar
  12. Duncan, A. & J. Kubečka, 1995. Land water ecotone effects in reservoirs on the fish fauna. Hydrobiologia 303: 11–30.CrossRefGoogle Scholar
  13. Duncan, A., J. Kubečka, S. Kett, N. Hanna & J. Skeldon, 2001. Habitats of 0+ fry in an English lowland river. Archiv für Hydrobiologie 12(Supplement Large Rivers): 153–171.Google Scholar
  14. Fernando, C. H. & J. Holčík, 1991. Fish in reservoirs. Internationale Revue der Gesamten Hydrobiologie 76: 149–167.CrossRefGoogle Scholar
  15. Fischer, P. & R. Eckmann, 1997a. Seasonal changes in fish abundance, biomass and species richness in the littoral zone of a large European lake, Lake Constance, Germany. Archiv für Hydrobiologie 139: 433–448.Google Scholar
  16. Fischer, P. & R. Eckmann, 1997b. Spatial distribution of littoral fish species in a large European lake, Lake Constance, Germany. Archiv für Hydrobiologie 140: 91–116.Google Scholar
  17. Gido, K. B., C. W. Hargrave, W. J. Matthews, G. D. Schnell, D. W. Pogue & G. W. Sewell, 2002. Structure of littoral-zone fish communities in relation to habitat, physical, and chemical gradients in a southern reservoir. Environmental Biology of Fishes 63: 253–263.CrossRefGoogle Scholar
  18. Gliwicz, Z. M. & A. Jachner, 1992. Diel migrations of juvenile fish – a ghost of predation past or present. Archiv für Hydrobiologie 124: 385–410.Google Scholar
  19. Gozlan, R. E., S. Mastrorillo, F. Dauba, J. N. Tourenq & G. H. Copp, 1998. Multi-scale analysis of habitat use during late summer for 0+ fishes in the River Garonne (France). Aquatic Sciences 60: 99–117.CrossRefGoogle Scholar
  20. Hejzlar, J. & V. Vyhnálek, 1998. Longitudinal heterogeneity of phosphorus and phytoplankton concentrations in deep-valley reservoirs. International Review of Hydrobiology 83: 139–146.CrossRefGoogle Scholar
  21. Hülsmann, S., T. Mehner, S. Worischka & M. Plewa, 1999. Is the difference in population dynamics of Daphnia galeata in littoral and pelagic areas of a long-term biomanipulated reservoir affected by age-0 fish predation? Hydrobiologia 408: 57–63.CrossRefGoogle Scholar
  22. Irwin, E. R., R. L. Noble & J. R. Jackson, 1997. Distribution of age-0 largemouth bass in relation to shoreline landscape features. North American Journal of Fisheries Management 17: 882–893.CrossRefGoogle Scholar
  23. Jacobsen, L. & S. Berg, 1998. Diel variation in habitat use by planktivores in field enclosure experiments: the effect of submerged macrophytes and predation. Journal of Fish Biology 53: 1207–1219.CrossRefGoogle Scholar
  24. Janssen, J. & M. A. Luebke, 2004. Preference for rocky habitat by age-0 yellow perch and alewives. Journal of Great Lakes Research 30: 93–99.CrossRefGoogle Scholar
  25. Jůza, T., M. Vašek, J. Kubečka, J. Seďa, J. Matěna, M. Prchalová, J. Peterka, M. Říha, O. Jarolím, M. Tušer, M. Kratochvíl, M. Čech, V. Draštík, J. Frouzová, E. Hohausová & J. Žaloudík, 2009. Pelagic underyearling communities in a canyon-shaped reservoir in late summer. Journal of Limnology 68: 304–314.Google Scholar
  26. Kahl, U., S. Hülsmann, R. J. Radke & J. Benndorf, 2008. The impact of water level fluctuations on the year class strength of roach: implications for fish stock management. Limnologica 38: 258–268.CrossRefGoogle Scholar
  27. Klemens, B., 2009. Modeling with Data: Tools and Techniques for Scientific Computing. Princeton University Press, Princeton.Google Scholar
  28. Kopáček, J. & J. Hejzlar, 1993. Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. International Journal of Environmental Analytical Chemistry 53: 173–183.CrossRefGoogle Scholar
  29. Kubečka, J., 1990. Seasonal changes of the species composition of the night seining catches and of the littoral fish fry community of the Římov Reservoir. In Kubečka, J. (ed.), Ichthyofauna of the Malše River and the Římov Reservoir. Jihočeské muzeum, České Budějovice: 88–93.Google Scholar
  30. Kubečka, J. & K. Pivnička, 1993. Numbers and production of juvenile cyprinids in the Klíčava reservoir (Czechoslovakia). Acta Universitatis Carolinae Environmentalica 5: 61–73.Google Scholar
  31. Kubečka, J. & M. Švátora, 1993. Abundance estimates of perch fry (Perca fluviatilis), complicated by grouped behaviour. Ecology of Freshwater Fish 2: 84–90.CrossRefGoogle Scholar
  32. Lepš, J. & P. Šmilauer, 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge.Google Scholar
  33. Lewin, W. C., N. Okun & T. Mehner, 2004. Determinants of the distribution of juvenile fish in the littoral area of a shallow lake. Freshwater Biology 49: 410–424.CrossRefGoogle Scholar
  34. Martin, D. B., L. J. Mengel, J. F. Novotny & C. H. Walburg, 1981. Spring and summer water levels in a Missouri River Reservoir – effects on age-0 fish and zooplankton. Transactions of the American Fisheries Society 110: 370–381.CrossRefGoogle Scholar
  35. Matěna, J., 1995. The role of ecotones as feeding grounds for fish fry in a Bohemian water-supply reservoir. Hydrobiologia 303: 31–38.CrossRefGoogle Scholar
  36. Miranda, L. E., 2005. Refining boat electrofishing equipment to improve consistency and reduce harm to fish. North American Journal of Fisheries Management 25: 609–618.CrossRefGoogle Scholar
  37. Okun, N. & T. Mehner, 2005. Distribution and feeding of juvenile fish on invertebrates in littoral reed (Phragmites) stands. Ecology of Freshwater Fish 14: 139–149.CrossRefGoogle Scholar
  38. Peňáz, M. & M. Prokeš, 1978. Reproduction and early development of gudgeon, Gobio gobio 1. Spawning and embryonic period. Folia Zoologica 27: 257–267.Google Scholar
  39. Pierce, C. L., M. D. Sexton, M. E. Pelham & J. G. Larscheid, 2001. Short-term variability and long-term change in the composition of the littoral zone fish community in Spirit Lake, Iowa. American Midland Naturalist 146: 290–299.CrossRefGoogle Scholar
  40. Prchalová, M., J. Kubečka, M. Vašek, J. Peterka, J. Sed’a, T. Jůza, M. Říha, O. Jarolím, M. Tušer, M. Kratochvíl, M. Čech, V. Draštík, J. Frouzová & E. Hohausová, 2008. Distribution patterns of fishes in a canyon-shaped reservoir. Journal of Fish Biology 73: 54–78.CrossRefGoogle Scholar
  41. Prchalová, M., J. Kubečka, M. Čech, J. Frouzová, V. Draštík, E. Hohausová, T. Jůza, M. Kratochvíl, J. Matěna, J. Peterka, M. Říha, M. Tušer & M. Vašek, 2009. The effect of depth, distance from dam and habitat on spatial distribution of fish in an artificial reservoir. Ecology of Freshwater Fish 18: 247–260.CrossRefGoogle Scholar
  42. Rheinberger, V., R. Hofer & W. Wieser, 1987. Growth and habitat separation in eight cohorts of three species of cyprinids in a subalpine lake. Environmental Biology of Fishes 18: 209–217.CrossRefGoogle Scholar
  43. Rychtecký, P. & P. Znachor, 2011. Spatial heterogeneity and seasonal succession of phytoplankton along the longitudinal gradient in a eutrophic reservoir. Hydrobiologia 663: 175–186.CrossRefGoogle Scholar
  44. Seďa, J. & M. Devetter, 2000. Zooplankton community structure along a trophic gradient in a canyon-shaped dam reservoir. Journal of Plankton Research 22: 1829–1840.CrossRefGoogle Scholar
  45. Slavík, O., 1992. Effect of water level height on the composition of fry community. Bulletin VÚRH Vodňany 2: 37–39.Google Scholar
  46. Straškraba, M., 1998. Limnological differences between deep valley reservoirs and deep lakes. International Review of Hydrobiology 83: 1–12.CrossRefGoogle Scholar
  47. Straškrabová, V., J. Hejzlar, L. Procházková & V. Vyhnálek, 1994. Eutrophication in stratified deep reservoirs. Water Science and Technology 30: 273–279.Google Scholar
  48. Urho, L., 1996. Habitat shifts of perch larvae as survival strategy. Annales Zoologici Fennici 33: 329–340.Google Scholar
  49. Vašek, M., J. Kubečka, J. Peterka, M. Čech, V. Draštík, M. Hladík, M. Prchalová & J. Frouzová, 2004. Longitudinal and vertical spatial gradients in the distribution of fish within a canyon-shaped reservoir. International Review of Hydrobiology 89: 352–362.CrossRefGoogle Scholar
  50. Vašek, M., J. Kubečka, J. Matěna & J. Seďa, 2006. Distribution and diet of 0+ fish within a canyon-shaped European reservoir in late summer. International Review of Hydrobiology 91: 178–194.CrossRefGoogle Scholar
  51. Wang, N. & R. Eckmann, 1994. Distribution of perch (Perca fluviatilis L.) during their first year of life in Lake Constance. Hydrobiologia 277: 135–143.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Michal Kratochvíl
    • 1
    • 2
  • Tomáš Mrkvička
    • 1
    • 3
  • Mojmír Vašek
    • 1
  • Jiří Peterka
    • 1
  • Martin Čech
    • 1
  • Vladislav Draštík
    • 1
  • Tomáš Jůza
    • 1
  • Josef Matěna
    • 1
  • Milan Muška
    • 1
  • Jaromír Sed’a
    • 1
  • Petr Znachor
    • 1
    • 2
  • Jan Kubečka
    • 1
  1. 1.Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., Institute of HydrobiologyČeské BudějoviceCzech Republic
  2. 2.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Faculty of EconomicsUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations