, Volume 696, Issue 1, pp 123–136 | Cite as

On the way to overcome some ecological riddles of forested headwaters

Primary Research Paper


Life cycles of many detritivores are synchronized to the autumnal input of leaf material in temperate forested headwaters, though some conditions that occur at this season does not seem the most appropriate for an optimal development and growth of individuals. We hypothesized that spring–summer conditions characterized by high temperature and low discharge would support larger numbers of invertebrate individuals inhabiting leaf packs, mostly shredders, and thus larger productivity values. We estimated the production of a dominant detritivore, the chironomid Brillia bifida (Kieffer, 1909), on habitats that represent their specific resource (i.e., leaf packs with different quality) on a seasonal basis that accounted for the high variability of these ecosystems. Our results showed that shredders dominated in numbers (45.8%) during late spring, with B. bifida individuals representing up to 91.7%, mostly on deciduous leaves such as alder, although the individual body size was higher in autumn–winter than in late spring. A laboratory experiment was conducted to complement our field results, and to test only the effects of water temperature and food quality on the development and growth of B. bifida. Our laboratory experiment confirmed the importance of temperature and food quality as main controls on growth–developmental parameters. These controls could strongly affect the ecological strategy of reproduction and colonization of this key detritivore, and ultimately its secondary production.


Body size Brillia bifida Growth rates Headwaters Leaf packs Secondary production Shredders 



We are very grateful to John S. Richardson and two anonymous referees, who provided useful comments that contributed to improve this manuscript. This study has been supported by the research project XUGA29106A96 of Xunta de Galicia.

Supplementary material

10750_2012_1188_MOESM1_ESM.pdf (78 kb)
Supplementary material 1 (PDF 78 kb)


  1. Abelho, M. & M. A. S. Graça, 1996. Effects of eucalyptus afforestation on leaf litter dynamics and macroinvertebrate community structure of streams in central Portugal. Hydrobiologia 324: 195–204.CrossRefGoogle Scholar
  2. Allen, K. R., 1951. The Horokiwi stream. New Zealand Marine Department Fisheries Bulletin 10: 1–231.Google Scholar
  3. Armitage, P., P. S. Cranston & L. C. V. Pinder, 1995. The Chironomidae: the biology and ecology of non-biting midges. Chapman & Hall Publishers, London.Google Scholar
  4. Ashe, P., D. A. Murray & F. Reiss, 1987. The zoogeographical distribution of Chironomidae (Insecta: Diptera). Annales de Limnologie-International Journal of Limnology 23: 27–60.CrossRefGoogle Scholar
  5. Atkinson, D., 1994. Temperature and organism size: a biological law for ectotherms? Advances in Ecological Research 25: 1–58.CrossRefGoogle Scholar
  6. Bärlocher, F., 1985. The role of fungi in the nutrition of stream invertebrates. Botanical Journal of the Linnean Society 91: 83–94.CrossRefGoogle Scholar
  7. Bärlocher, F., C. Canhoto & M. A. S. Graça, 1995. Fungal colonization of alder and eucalypt leaves in two streams in Central Portugal. Archiv Für Hydrobiologie 133: 457–470.Google Scholar
  8. Basaguren, A. & J. Pozo, 1994. Leaf litter processing of alder and eucalyptus in the Agüera stream system (northern Spain). II Macroinvertebrates associated. Archiv Für Hydrobiologie 132: 57–68.Google Scholar
  9. Benke, A. C., 1979. A modification of the Hynes method for estimating secondary production with particular significance for multivoltine populations. Limnology and Oceanography 24: 168–171.CrossRefGoogle Scholar
  10. Benke, A. C., 1984. Secondary production of aquatic insects. In Resh, V. H. & D. M. Rosenberg (eds), Ecology of Aquatic Insects. Praeger, New York: 289–322.Google Scholar
  11. Benke, A. C., 1993. Concepts and patterns of invertebrate production in running waters. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 25:15–38. Google Scholar
  12. Benke, A. C., 1998. Production dynamics of riverine chironomids: extremely high biomass turnover rates of primary consumers. Ecology 79: 899–910.CrossRefGoogle Scholar
  13. Benke, A. C. & J. B. Waide, 1977. In defence of average cohorts. Freshwater Biology 7: 61–63.CrossRefGoogle Scholar
  14. Berg, M. B. & R. A. Hellenthal, 1992. The role of Chironomidae in energy flow of a lotic ecosystem. Netherlands Journal of Aquatic Ecology 26: 471–476.CrossRefGoogle Scholar
  15. Canhoto, C. & M. A. S. Graça, 1995. Food value of introduced eucalypt leaves for a Mediterranean stream detritivore Tipula lateralis. Freshwater Biology 34: 209–214.CrossRefGoogle Scholar
  16. Canhoto, C. & M. A. S. Graça, 1996. Decomposition of Eucalyptus globulus leaves and tree native leaf species (Alnus glutinosa, Castanea sativa and Quercus faginea) in a Portuguese low order stream. Hydrobiologia 333: 79–85.CrossRefGoogle Scholar
  17. Canhoto, C. & M. A. S. Graça, 1999. Leaf barriers to fungal colonization and shredders (Tipula lateralis) consumption of decomposing Eucalyptus globulus. Microbial Ecology 37: 163–172.PubMedCrossRefGoogle Scholar
  18. Chauvet, E. & A. M. Jean-Louis, 1988. Production de litiére de la ripisylve de la Garonne et apport au fleuve. Acta Oecologica 9: 265–279.Google Scholar
  19. Cillero, C., I. Pardo & E. S. López, 1999. Comparisons of riparian vs. over stream trap location in the estimation of vertical litterfall inputs. Hydrobiologia 416: 171–179.CrossRefGoogle Scholar
  20. Cranston, P. S., D. R. Oliver & O. A. Saether, 1983. The larvae of Orthocladiinae (Diptera: Chironomidae) of the Holarctic region. Keys and diagnoses. In Wiederholm, T. (ed.), Chironomidae of the Holarctic region. Part 1. Larvae, Vol. 19. Entomologica Scandinavica Supplement, Lund, Sweden: 149–291.Google Scholar
  21. Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147–172.CrossRefGoogle Scholar
  22. Cummins, K. W., M. A. Wilzbach, D. M. Gates, J. B. Perry & W. B. Taliaferro, 1989. Shredders and riparian vegetation. BioScience 39: 24–30.CrossRefGoogle Scholar
  23. Dangles, O. & B. Malmqvist, 2004. Species richness–decomposition relationships depend on species dominance. Ecology Letters 7: 395–402.CrossRefGoogle Scholar
  24. Dineen, G., S. S. C. Harrison & P. S. Giller, 2007. Diet partitioning in sympatric Atlantic salmon and brown trout in streams with contrasting riparian vegetation. Journal of Fish Biology 71: 17–38.CrossRefGoogle Scholar
  25. Enríquez, S., C. M. Duarte & K. Sand-Jensen, 1993. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P component. Oecologia 94: 457–471.CrossRefGoogle Scholar
  26. Entrekin, S. A., E. J. Rosi-Marshall, J. L. Tank, T. J. Hoellein & G. A. Lamberti, 2007. Macroinvertebrate secondary production in 3 forested streams of the upper Midwest, USA. Journal of the North American Benthological Society 26: 472–490.CrossRefGoogle Scholar
  27. Fisher, S. G. & G. E. Likens, 1973. Energy flow in Bear Brook, New Hampshire—integrative approach to stream ecosystem metabolism. Ecological Monographs 43: 421–439.CrossRefGoogle Scholar
  28. Gahan, J. B. & C. N. Smith, 1964. Problems connected with raising mosquitos in the laboratory. Bulletin of the World Health Organization 31: 445–448.PubMedGoogle Scholar
  29. Gessner, M. O. & E. Chauvet, 1994. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75: 1807–1817.CrossRefGoogle Scholar
  30. Gessner, M. O., E. Chauvet & M. Dobson, 1999. A perspective on leaf litter breakdown in streams. Oikos 85: 377–384.CrossRefGoogle Scholar
  31. Graça, M. A. S. & C. Canhoto, 2006. Leaf litter processing in low order streams. Limnetica 25: 1–10.Google Scholar
  32. Graça, M. A. S., C. Cressa, M. O. Gessner, M. J. Feio, K. A. Callies & C. Barrios, 2001. Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshwater Biology 46: 947–957.CrossRefGoogle Scholar
  33. Graça, M. A. S., J. Pozo, C. Canhoto & A. Elosegi, 2002. Effects of Eucalyptus plantations on detritus, decomposers, and detritivores in streams. The Scientific World 2: 1173–1185.CrossRefGoogle Scholar
  34. Grubbs, S. A. & K. W. Cummins, 1996. Linkages between riparian forest composition and shredder voltinism. Archiv Für Hydrobiologie 137: 39–58.Google Scholar
  35. Grubbs, S. A., R. E. Jacobsen & K. W. Cummins, 1995. Colonization by Chironomidae (Insecta, Diptera) on three distinct leaf substrates in an Appalachian mountain stream. Annales de Limnologie-International Journal of Limnology 31: 105–118.CrossRefGoogle Scholar
  36. Hamilton, A. L., 1969. On estimating annual production. Limnology and Oceanography 14: 771–782.CrossRefGoogle Scholar
  37. Huffaker, C. B., 1944. The temperature relations of the immature stages of the malarial mosquito, Anopheles quadrimaculatus Say, with a comparison of the developmental power of constant and variable temperatures in insect metabolism. Annals of the Entomological Society of America 37: 1–27.Google Scholar
  38. Huryn, A. D. & J. B. Wallace, 2000. Life history and production of stream insects. Annual Review of Entomology 45: 83–110.PubMedCrossRefGoogle Scholar
  39. Hutchens, J. J., E. F. Benfield & J. R. Webster, 1997. Diet and growth of a leaf-shredding caddisfly in southern Appalachian streams of contrasting disturbance history. Hydrobiologia 346: 193–201.CrossRefGoogle Scholar
  40. Hynes, H. B. N., 1970. The Ecology of Running Waters. University of Toronto Press, Toronto.Google Scholar
  41. Hynes, H. B. N. & M. J. Coleman, 1968. A simple method of assessing annual production of stream Benthos. Limnology and Oceanography 13: 569–573.CrossRefGoogle Scholar
  42. Iversen, T. M., 1974. Ingestion and growth in Sericostoma personatum (Trichoptera) in relation to nitrogen content of ingested leaves. Oikos 25: 278–282.CrossRefGoogle Scholar
  43. Karl, I. & K. Fischer, 2008. Why get big in the cold? Towards a solution to a life-history puzzle. Oecologia 155: 215–225.PubMedCrossRefGoogle Scholar
  44. Kaushik, N. K. & H. B. N. Hynes, 1971. Fate of dead leaves that fall into streams. Archiv Für Hydrobiologie 68: 465–515.Google Scholar
  45. Leberfinger, K. & J. Herrmann, 2010. Secondary production of invertebrate shredders in open canopy, intermittent streams on the island of Öland, southeastern Sweden. Journal of North American Benthological Society 29: 934–944.CrossRefGoogle Scholar
  46. López, E. S., N. Felpeto & I. Pardo, 1997. Comparisons of methods to study the processing of Alnus glutinosa and Eucalyptus globulus leaves in a forested headwater stream. Limnetica 13: 13–18.Google Scholar
  47. López, E. S., I. Pardo & N. Felpeto, 2001. Seasonal differences in green leaf breakdown and nutrient content of deciduous and evergreen tree species and grass in a granitic headwater stream. Hydrobiologia 464: 51–61.CrossRefGoogle Scholar
  48. Mackey, A. P., 1977. Growth and development of larval Chironomidae. Oikos 28: 270–275.CrossRefGoogle Scholar
  49. Melillo, J. M., R. J. Naiman, J. D. Aber & A. E. Likins, 1982. Factors controlling mass loss and nitrogen dynamics of plant litter decaying in northern streams. Bulletin of Marine Sciences 35: 341–356.Google Scholar
  50. Oliver, D. R., 1971. Life history of the chironomidae. Annual Review of Entomology 16: 211–230.CrossRefGoogle Scholar
  51. Palmer, M. A., C. M. Swan, K. Nelson, P. Silver & R. Alvestad, 2000. Stream landscapes: evidence that stream invertebrates respond to the type and spatial arrangement of patches. Landscape Ecology 15: 563–576.CrossRefGoogle Scholar
  52. Pardo, I., 2000. Patterns of community assembly in a fourth order stream. Archiv für Hydrobiologie 148: 301–320.Google Scholar
  53. Pardo, I. & M. Álvarez, 2006. Comparison of resource and consumer dynamics in Atlantic and Mediterranean streams. Limnetica 25: 271–286.Google Scholar
  54. Petersen, R. C. & K. W. Cummins, 1974. Leaf processing in a woodland stream. Freshwater Biology 4: 343–368.CrossRefGoogle Scholar
  55. Pinder, L. C. V., 1986. Biology of freshwater Chironomidae. Annual Review of Entomology 31: 1–23.CrossRefGoogle Scholar
  56. Power, M. E., 1990. Effects of fish in river food webs. Science 250: 811–814.PubMedCrossRefGoogle Scholar
  57. Power, M. E., R. J. Stout, C. E. Cushing, P. P. Harper, F. R. Hauer, W. J. Matthews, P. B. Moyle, B. Statzner & I. R. Wais de Badgen, 1988. Biotic and abiotic controls in river and stream communities. Journal of the North American Benthological Society 7: 456–479.CrossRefGoogle Scholar
  58. Pozo, J., 1993. Leaf litter processing of alder and eucalyptus in the Agüera stream system (North Spain) I. Chemical changes. Archiv für Hydrobiologie 127: 299–317.Google Scholar
  59. Pozo, J., A. Basaguren, A. Elósegi, J. Molinero, E. Fabre & E. Chauvet, 1998. Afforestation with Eucalyptus globulus and leaf litter decomposition in streams of northern Spain. Hydrobiologia 373(374): 101–109.CrossRefGoogle Scholar
  60. Quinn, G. & M. Keough, 2002. Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, London.CrossRefGoogle Scholar
  61. Richardson, J. S., 1991. Seasonal food limitation of detritivores in a montane stream: an experimental test. Ecology 72: 873–887.CrossRefGoogle Scholar
  62. Richardson, J. S., 2001. Life cycle phenology of common detritivores from a temperate rainforest stream. Hydrobiologia 455: 87–95.CrossRefGoogle Scholar
  63. Rowe, L. & D. Ludwig, 1991. Size and timing of metamorphosis in complex life cycles: time constraints and variation. Ecology 72: 413–427.CrossRefGoogle Scholar
  64. Schlosser, I. J., 1991. Stream fish ecology: a landscape perspective. BioScience 41: 704–712.CrossRefGoogle Scholar
  65. Scriber, J. M. & F. Slansky, 1981. The nutritional ecology of immature insects. Annual Review of Entomology 26: 183–211.CrossRefGoogle Scholar
  66. Slansky, F. & J. M. Scriber, 1985. Food consumption and utilization. In Kerkut, G. A. & L. I. Gilbert (eds), Comprehensive Insect Physiology Biochemistry and Pharmacology, Vol. 4. Pergamon Press, Oxford, Newyork: 87–163.Google Scholar
  67. Stout, R. J. & W. H. Taft, 1985. Growth patterns of a chironomid shredder on fresh and senescent tag alder leaves in two Michigan streams. Journal of Freshwater Ecology 2: 147–153.CrossRefGoogle Scholar
  68. Stout, B. M., E. F. Benfield & J. R. Webster, 1993. Effects of a forest disturbance on shredder production in Southern Appalachian headwater streams. Freshwater Biology 29: 59–69.CrossRefGoogle Scholar
  69. Suarez, J. L., L. Reiriz & R. Anadon, 1988. Feeding relationships between two salmonid species and the benthic community. Polskie Archiwum Hydrobiologii 35: 341–359.Google Scholar
  70. Sweeney, B. W., 1984. Factors influencing life history patterns of aquatic insects. In Resh, V. H. & D. M. Rosenberg (eds), The Ecology of Aquatic Insects. Praeger, New York: 56–100.Google Scholar
  71. Sweeney, B. W. & R. L. Vannote, 1978. Size variation and the distribution of hemimetabolous aquatic insects: two thermal equilibrium hypotheses. Science 200: 444–446.PubMedCrossRefGoogle Scholar
  72. Sweeney, B. W. & R. L. Vannote, 1986. Growth and production of a stream stonefly: influences of diet and temperature. Ecology 67: 1396–1410.CrossRefGoogle Scholar
  73. Sweeney, B. W., R. L. Vannote & P. J. Dodds, 1986. The relative importance of temperature and diet to larval development and adult size of the winter stonefly, Soyedina carolinensis (Plecoptera: Nemouridae). Freshwater Biology 16: 39–48.CrossRefGoogle Scholar
  74. Teixeira, A. & R. M. V. Cortés, 2006. Diet of stocked and wild trout, Salmo trutta: is there competition for resources? Folia Zoologica 55: 61–73.Google Scholar
  75. Tokeshi, M., 1995. Life cycles and population dynamics. In Armitage, P. S., P. S. Cranston & L. C. V. Pinder (eds), The chironomidae. The Biology and Ecology of Non-biting Midges. Chapman and Hall, London: 225–234.Google Scholar
  76. Townsend, C. R., 1989. The patch dynamics concept of stream community ecology. Journal of the North American Benthological Society 8: 36–50.CrossRefGoogle Scholar
  77. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  78. Von Ende, C. N., 2001. Repeated-measures analysis. In Scheiner, S. M. & J. Gurevitch (eds), Design and Analysis of Ecological Experiments., 8 Oxford University Press, New York: 134–157.Google Scholar
  79. Wantzen, K. M., C. M. Yule, J. M. Mathooko & C. M. Pringle, 2008. Organic matter processing in tropical streams. In Dudgeon, D. (ed.), Tropical Stream Ecology. Elsevier, London: 43–64.CrossRefGoogle Scholar
  80. Ward, J. V. & J. A. Stanford, 1982. Thermal responses in the evolutionary ecology of aquatic insects. Annual Review of Entomology 27: 97–117.CrossRefGoogle Scholar
  81. Waters, T. F., 1977. Secondary production in inland waters. Advances in Ecological Research 10: 91–164.CrossRefGoogle Scholar
  82. Waters, T. F., 1988. Fish production-benthos production relationships in trout streams. Polskie Archiwum Hydrobiologii 35: 545–561.Google Scholar
  83. Whiles, M. R. & J. B. Wallace, 1995. Macroinvertebrate production in a headwater stream during recovery from anthropogenic disturbance and hydrologic extremes. Canadian Journal of Fisheries and Aquatic Sciences 52: 2402–2422.CrossRefGoogle Scholar
  84. Woodward, G., D. M. Perkins & L. E. Brown, 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2093–2106.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Departamento de Ecología y Biología Animal, Facultad de CienciasUniversidad de VigoVigoSpain

Personalised recommendations