Advertisement

Hydrobiologia

, Volume 695, Issue 1, pp 125–135 | Cite as

Improvement of the ecological water qualification system of rivers based on the first results of the Hungarian phytobenthos surveillance monitoring

  • Gábor Várbíró
  • Gábor Borics
  • Béla Csányi
  • Gizella Fehér
  • István Grigorszky
  • Keve Tihamér Kiss
  • Adrienne Tóth
  • Éva Ács
ALGAE FOR MONITORING RIVERS

Abstract

Results of an ecological quality ratio-based qualification system, developed on the basis of the analysis of 1,161 benthic diatom dataset of the Hungarian national database, are presented herein. Using Kohonen’s Self Organising Map technique, the 25 Hungarian physiographic river types were pooled into six larger distinct categories (diatom river groups). Diatom metrics were tested for their sensitivity to the targeted stressors (nutrients, COD hydromorphological alteration) in each group. The strongest relationships were found in the case of the IPS, SI and TI indices; therefore the average of these metrics (IPSITI) was proposed as a national multimetric index for Hungarian streams. Based on IPSITI values, the ratio of moderate to worse quality water was the highest in those groups containing small rivers. In the case of large, lowland and mid-altitude rivers with fine sediment, the good and moderate ecological status was more characteristic. Applicability of the IPSITI seems to be very useful in case of small- and medium-sized rivers. For these rivers, the index showed a significant relationship with nutrients and organic pollutants. In the case of very large rivers, the stressor–index relationships were not significant because of the insufficient number of samples and the small range of stressors.

Keywords

Diatoms Phytobenthos Ecological status assessment WFD EQR 

Notes

Acknowledgments

This work was funded by the Hungarian Ministry of Environment and Water, the Bolyai Foundation of the Hungarian Academy of Sciences (BO/00525/07), the Hungarian National Science Foundation (OTKA K 86327, OTKA K60452, SAB 81459) and the Hungarian-Croatian Intergovernmental S&T Cooperation Programme (OMFB-01639/2009). The authors thank Dr. Eduardo A. Morales for the improvement of the manuscript.

References

  1. Ács, É. & K. T. Kiss, 1997. Kovaalgák mintavételi módszerei és vizsgálata (Sampling and studying methods of diatoms). In Török, K. (ed.), Nemzeti Biodiverzitás-monitorozó Rendszer IV. Növényfajok. (National Biodiversity Monitoring System IV. Plants). Magyar Természettudományi Múzeum, Budapest: 111–114.Google Scholar
  2. Ács, É., K. Szabó, B. Tóth & K. T. Kiss, 2004. Investigation of benthic algal communities, especially diatoms of some Hungarian streams in connection with reference conditions of the water framework directives. Acta Botanica Hungarica 46: 255–277.CrossRefGoogle Scholar
  3. Ács, É., K. Szabó, Á. K. Kiss, B. Tóth, Gy. Záray & K. T. Kiss, 2006. Investigation of epilithic algae on the River Danube from Germany to Hungary and the effect of a very dry year on the algae of the River Danube. Archiv für Hydrobiologie Supplement 158, Large Rivers 16: 389–417.Google Scholar
  4. Birk, S. & D. Hering, 2009. A new procedure for comparing class boundaries of biological assessment methods: a case study from the Danube Basin. Ecological Indicators 9: 528–539.CrossRefGoogle Scholar
  5. CEMAGREF, 1982. Etude des méthodes biologiques d’appréciation quantitative de la qualité des eaux. Rapport Qualité des Eaux Lyon - Agence Financière de Bassin Rhône-Méditeranée-Corse: 218 pp.Google Scholar
  6. Céréghino, R. & Y.-S. Park, 2009. Review of the Self-Organizing Map (SOM) approach in water resources: Commentary. Environmental Modelling & Software 24: 945–947.CrossRefGoogle Scholar
  7. Davies, D. L. & D. W. Bouldin, 1979. A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 1: 224–227.PubMedCrossRefGoogle Scholar
  8. ECOSTAT, 2003. Overall Approach to the Classification of Ecological Status and Ecological Potential. Water Framework Directive. Common Implementation Strategy. Working Group 2 A. Ecological Status (ECOSTAT): 47 pp. [available on internet at http://www.monae.org/documents/Ecological%20Classification%20Guidance.pdf].
  9. ECOSURV, 2005. ECOSURV Project, Final Reports (Ecological Survey of Surface Waters, Hungary). Budapest/Arnhem, ARCADIS Euroconsult [available on internet at http://www.eu-wfd.info/ecosurv/].
  10. Gosselain, V., S. Campeau, M. Gevrey, M. Coste, L. Ector, F. Rimet, J. Tison, F. Delmas, Y. S. Park, S. Lek & J.-P. Descy, 2005. Diatom typology of low-impacted conditions at a multi-regional scale: combined results of multivariate analyses and SOM. In Lek, S., M. Scardi, P. F. M. Verdonschot, J.-P. Descy & Y.-S. Park (eds), Modelling Community Structure in Freshwater Ecosystems. Springer Verlag, Berlin: 317–342.CrossRefGoogle Scholar
  11. Kelly, M., C. Bennett, M. Coste, C. Delgado, F. Delmas, L. Denys, L. Ector, C. Fauville, M. Ferréol, M. Golub, A. Jarlman, M. Kahlert, J. Lucey, B. Ní Chatháin, I. Pardo, P. Pfister, J. Picinska-Faltynowicz, J. Rosebery, C. Schranz, J. Schaumburg, H. van Dam & S. Vilbaste, 2009. A comparison of national approaches to setting ecological status boundaries in phytobenthos assessment for the European Water Framework Directive: results of an intercalibration exercise. Hydrobiologia 621: 169–182.CrossRefGoogle Scholar
  12. Kiss, K. T. & É. Ács, 1997. Kovaalgák monitorozási útmutatója (Guide for monitoring of diatoms). In Török, K. (ed.), Nemzeti Biodiverzitás-monitorozó Rendszer IV. Növényfajok. (National Biodiversity Monitoring System IV. Plants). Magyar Természettudományi Múzeum, Budapest: 84–93.Google Scholar
  13. Kohonen, T., 2001. Self-Organizing Maps, 3rd ed. Springer Verlag, Berlin.CrossRefGoogle Scholar
  14. Kovács, Cs., J. Padisák & É. Ács, 2005. A bevonatlakó kovaalgák alkalmazása a hazai kisvízfolyások ökológiai minősítésében. (Use of benthic diatoms for ecological qualification of Hungarian small rivers). Hidrológiai Közlöny 85: 64–67.Google Scholar
  15. Krammer, K. & H. Lange-Bertalot, 1986–1991. Bacillariophyceae 1. Teil: Naviculaceae, 876 pp.; 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae, 596 pp.; 3. Teil: Centrales, Fragilariaceae, Eunotiaceae, 576 pp.; 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, 437 pp. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Sußwasserflora von Mitteleuropa Band 2/1-4. G. Fischer Verlag, Stuttgart.Google Scholar
  16. Lange-Bertalot, H., 1993. 85 neue Taxa und über 100 weitere neu definierte Taxa ergänzend zur Süßwasserflora von Mitteleuropa Vol. 2/1-4. Bibliotheca Diatomologica 27: 1–454.Google Scholar
  17. Lecointe, C., M. Coste & J. Prygiel, 1993. “Omnidia”: software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia 269/270: 509–513.CrossRefGoogle Scholar
  18. Lek, S. & J.-F. Guégan, 2000. Artificial Neuronal Networks: Application to Ecology and Evolution. Springer Verlag, Berlin.Google Scholar
  19. MoEW, 2005. National Report for the European Union on the timeshared completion of the implementation of WFD in Hungary. Report of the Ministry of Environment and Water.Google Scholar
  20. Padisák, J., É. Ács, G. Borics, K. Buczkó, I. Grigorszky, Cs. Kovács, J. Mádl-Szőnyi & É. Soróczki-Pintér, 2006. A Víz Keretirányelv és a vízi habitatdiverzitás konzervációbiológiai vonatkozásai (The Water Framework Directives and its conservation biological aspects for the habitat diversity). Magyar Tudomány 6: 663–669.Google Scholar
  21. Park, Y.-S., R. Céréghino, A. Compin & S. Lek, 2003. Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecological Modelling 160: 265–280.CrossRefGoogle Scholar
  22. Prygiel, J. & M. Coste, 2000. Guide méthodologique pour la mise en oeuvre de l’Indice Biologique Diatomées NF T 90-354. Agences de l’Eau, Ministère de l’Aménagement du Territoire et de l’Environnement, Cemagref: 134 pp.Google Scholar
  23. Rott, E., G. Hofmann, K. Pall, P. Pfister & E. Pipp, 1997. Indikatorlisten für Aufwuchsalgen in österreichischen Fliessgewässern. Teil. 1: Saprobielle Indikation. Bundesministerium für Land- und Forstwirschaft, Wasserwirtschaftskataster, Wien.Google Scholar
  24. Rott, E., E. Pipp, P. Pfister, H. van Dam, K. Orther, N. Binder & K. Pall, 1999. Indikationslisten für Aufwuchsalgen in österreichischen Fliessgewässern. Teil 2: Trophieindikation. Bundesministerium für Land- und Forstwirschaft, Wasserwirtschaftskataster, Wien.Google Scholar
  25. Szabó, K., K. T. Kiss, L. Ector, M. Kecskés & É. Ács, 2004. Benthic diatom flora in a small Hungarian tributary of River Danube (Rákos-stream). Algological Studies 111: 79–94.CrossRefGoogle Scholar
  26. Szabó, K. É., K. T. Kiss, Gy. Taba & É. Ács, 2005. Epiphytic diatoms of the Tisza River, Kisköre Reservoir and some oxbows of the Tisza River after the cyanide and heavy metal pollution in 2000. Acta Botanica Croatica 64: 1–46.Google Scholar
  27. Szilágyi, F., É. Ács, G. Borics, B. Halasi-Kovács, P. Juhász, B. Kiss, T. Kovács, Z. Müller, G. Lakatos, J. Padisák, P. Pomogyi, C. Stenger-Kovács, K. É. Szabó, E. Szalma & B. Tóthmérész, 2008. Application of water framework directive in Hungary: development of biological classification systems. Water Science and Technology 58: 2117–2125.PubMedCrossRefGoogle Scholar
  28. The European Parliament and the Council of the European Union, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 20000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities L 327: 1–72.Google Scholar
  29. van Dam, H., C. Stenger-Kovács, É. Ács, G. Borics, K. Buczkó, É. Hajnal, É. Soróczki-Pintér, G. Várbíró, B. Tóthmérész & J. Padisák, 2007. Implementation of the European Water Framework Directive: development of a system for water quality assessment of Hungarian running waters with diatoms. In Ács, É., K. T. Kiss & J. Padisák (eds), Proceedings of 6th International Symposium on Use of Algae for Monitoring Rivers, Hungary, Balatonfüred, 12–16 September 2006. Archiv für Hydrobiologie Supplement 161, Large Rivers 17: 339–364.Google Scholar
  30. Várbíró, G., G. Borics, K. T. Kiss, K. É. Szabó, A. Plenković-Moraj & É. Ács, 2007. Use of Kohonen Self Organizing Maps (SOM) for the characterization of benthic diatom associations of the River Danube and its tributaries. In Ács, É., K. T. Kiss & J. Padisák (eds), Proceedings of 6th International Symposium on Use of Algae for Monitoring Rivers, Hungary, Balatonfüred, 12–16 September 2006. Archiv für Hydrobiologie Supplement 161, Large Rivers 17: 395–403.Google Scholar
  31. Vesanto, J. & E. Alhoniemi, 2000. Clustering of the self-organizing map. IEEE Transactions on Neural Networks 11: 586–600.PubMedCrossRefGoogle Scholar
  32. Wallin, M., T. Wiederholm & R. K. Johnson, 2005. Final – Guidance on establishing reference conditions and ecological status class boundaries for inland surface waters. Produced by CIS Working Group 2.3 – REFCOND [available on internet at http://www.minenv.gr/pinios/00/odhgia/7th_draft_refcond_final.pdf].

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Gábor Várbíró
    • 1
  • Gábor Borics
    • 1
  • Béla Csányi
    • 2
  • Gizella Fehér
    • 3
  • István Grigorszky
    • 4
  • Keve Tihamér Kiss
    • 5
  • Adrienne Tóth
    • 1
  • Éva Ács
    • 5
  1. 1.Department of Tisza River ResearchBalaton Limnological Institute, Centre for Ecological Research of HASTihanyHungary
  2. 2.Environmental Protection and Water Management Research InstituteBudapestHungary
  3. 3.Lower Danube Valley Directorate for Environment and WaterBajaHungary
  4. 4.Hydrobiological Department of Debrecen UniversityDebrecenHungary
  5. 5.Danube Research Institute, Centre for Ecological Research of HASGödHungary

Personalised recommendations