, Volume 695, Issue 1, pp 185–197 | Cite as

DIATMOD: diatom predictive model for quality assessment of Portuguese running waters

  • Salomé F. P. Almeida
  • Maria J. Feio


A predictive model for diatoms based on an adaptation of the River Invertebrate Prediction and Classification System/Australian River Assessment System approaches was evaluated as an effective tool for measuring stream ecological quality. This type of model was originally developed in UK and later in Australia and is extensively used to obtain ecological quality assessments with macroinvertebrates. The first step for the model construction was the definition of six consistent reference biological groups (ANOSIM: Global R = 0.77; P < 0.001) after classification (UPGMA) and ordination (nMDS) of 120 reference sites containing 254 different diatom taxa (species and infra-specific rank). A set of five environmental variables (slope, hydrological regime, mean annual temperature, mean annual precipitation and alkalinity) correctly discriminated 67% of reference sites (stepwise forward discriminant analysis, Jackknifed classification). The model was statistically accurate (slope = 1.07, intercept = −0.68, R 2 = 0.65) and was validated by an independent set of reference data (13 reference sites; 70% correct answers). In addition, the model was tested by running data from 113 potentially disturbed sites. The model (DIATMOD) was well correlated with a general abiotic degradation gradient (Spearman correlations, R 2 = 0.53, P < 0.001; and PCA analysis) and also with several specific pressure variables such as nitrates, phosphates, urban area, connectivity and land use (P < 0.001). Most diatom indices assess chemical contamination and we showed here that through predictive modelling the potential of diatoms as bioindicators increases as they also responded to hydromorphological changes. Further investigation on model potential consists in: testing different probability levels for taxa inclusion (here it was >0.5 as the most common models); comparing with alternative classification systems; assessing the influence of substrate type and seasonal variation in assessments.


Predictive models Freshwater diatoms Bioassessment Streams Water Framework Directive 



This study was possible due to funding by the Portuguese Water Institute (INAG). The data were made available by INAG. The second author had financial support from FSE and POPH through the contract Ciência 2008 of the Fundação para a Ciência e Tecnologia. We would like to thank all the teams involved in data gathering as well as team leaders: M. Morais, P. Pinto, M. T. Ferreira, R. V. Cortes and N. Formigo. The Institute of Marine Research (IMAR-CIC), and GeoBioTec Research Unit and Biology Department of the University of Aveiro for support.


  1. Agência Portuguesa do Ambiente, 2007. Atlas do Ambiente Digital available on internet at
  2. Almeida, S. F. P. & M. C. P. Gil, 2001. Ecology of freshwater diatoms from the central region of Portugal. Cryptogamie, Algologie 22: 109–126.CrossRefGoogle Scholar
  3. APHA, 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association, Washington, DC.Google Scholar
  4. Armitage, P. D., D. Moss, J. F. Wright & M. T. Furse, 1983. The performance of a new water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Research 1: 333–347.CrossRefGoogle Scholar
  5. Carlisle, D. M., C. P. Hawkins, R. M. Meador, M. Potapova & J. Falcone, 2008. Biological assessments of Appalachian streams based on predictive models for fish, macroinvertebrate, and diatom assemblages. Journal of the North American Benthological Society 27: 16–37.CrossRefGoogle Scholar
  6. Cemagref, 1982. Etude des méthodes biologiques d’appréciation quantitative de la qualité des eaux. Ministère de l’Agriculture, Cemagref, Division Qualité des Eaux. Pêche et Pisciculture, Lyon: 218.Google Scholar
  7. Chessman, B. C., 1999. Predicting diatom communities at the genus level from the rapid biological assessment of rivers. Freshwater Biology 41: 317–331.Google Scholar
  8. Clarke, R. T., J. F. Wright & M. T. Furse, 2003. RIVPACS models for predicting the expected macroinvertebrate fauna and assessing the ecological quality of rivers. Ecological Modelling 160: 219–233.CrossRefGoogle Scholar
  9. CORINE Land Cover, 2000. Instituto do Ambiente, Portugal.Google Scholar
  10. Coste, M., 1986. Les méthodes microfloristiques d’évaluation de la qualité des eaux. Cemagref, Bordeaux, 15 pp, +46 annexes.Google Scholar
  11. Davies, P. E., 2000. Development of a national river bioassessment system (AUSRIVAS). In Wright, J. F., D. W. Sutcliffe & M. T. Furse (eds), Assessing the Biological Quality of Fresh Waters: RIVPACS and Other Techniques. Freshwater Biological Association, Ambleside: 113–124.Google Scholar
  12. Duong, T. T., A. Feurtet-Mazel, M. Coste, D. K. Dang & A. Boudou, 2007. Dynamics of diatom colonization process in some rivers influenced by urban pollution (Hanoi, Vietnam). Ecological Indicators 7: 839–851.CrossRefGoogle Scholar
  13. European Commission, 2009. WFD Intercalibration Technical Report. Part 1: Rivers. Directorate General JRC – Joint Research Centre, Institute of Environment and Sustainability: 136 pp.Google Scholar
  14. European Committee for Standardization, 2003. European Standard. EN 13946. Water quality – Guidance Standard for the Routine Sampling and Pretreatment of Benthic Diatoms from Rivers. CEN, Brussels: 14 pp.Google Scholar
  15. European Committee for Standardization, 2004. European Standard. EN 14407. Water Quality – Guidance Standard for the Identification, Enumeration and Interpretation of Benthic Diatom Samples from Running Waters. CEN, Brussels: 12 pp.Google Scholar
  16. European Committee for Standardization, 2006. European Standard. EN 14996. Water Quality – Guidance on Assuring the Quality of Biological and Ecological Assessments in the Aquatic Environment. CEN, Brussels: 14 pp.Google Scholar
  17. Feio, M. J., S. F. P. Almeida, S. C. Craveiro & A. J. Calado, 2007. Diatoms and macroinvertebrates provide consistent and complementary information on environmental quality. Fundamental and Applied Limnology, Archiv für Hydrobiologie 169: 247–258.CrossRefGoogle Scholar
  18. Feio, M. J., S. F. P. Almeida, S. C. Craveiro & A. J. Calado, 2009. A comparison between biotic indices and predictive models in stream water quality assessment based on benthic diatom communities. Ecological Indicators 9: 497–507.CrossRefGoogle Scholar
  19. Gevrey, M., F. Rimet, Y. S. Park, J.-L. Giraudel, L. Ector & S. Lek, 2004. Water quality assessment using diatom assemblages and advanced modelling techniques. Freshwater Biology 49: 208–220.CrossRefGoogle Scholar
  20. Griffith, M. B., B. H. Hill, A. T. Herlihy & P. R. Kaufmann, 2002. Multivariate analysis of periphyton assemblages in relation to environmental gradients in Colorado Rocky Mountain streams. Journal of Phycology 38: 83–95.CrossRefGoogle Scholar
  21. Hill, W. R., 1996. Effects of light. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego, CA, USA: 121–148.Google Scholar
  22. Hofmann, G., 1994. Aufwuchs-Diatomeen in Seen und ihre Eignung als Indikatoren der Trophie. Bibliotheca Diatomologica 30: 1–241.Google Scholar
  23. INAG, 2008. Manual para a avaliação biológica da qualidade da água em sistemas fluviais segundo a Directiva Quadro da Água. Protocolo de amostragem e análise para o fitobentos-diatomáceas. Ministério do Ambiente, Ordenamento do Território e do Desenvolvimento Regional. Instituto da Água, I.P.: 35 pp, +4 annexes.Google Scholar
  24. INAG, 2009. Critérios para a Classificação do Estado das Massas de Água Superficiais: Rios e Albufeiras. Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional. Instituto da Água, I.P.: 71 pp, +3 annexes, available on internet at
  25. ISO 8467, 1986. Water Quality, Determination of Permanganate Index. ISO International Standard (ISO), 8467, Geneva, Switzerland.Google Scholar
  26. John, J., 2004. Assessment of river health in Australia by diatom assemblages – a review. Oceanological and Hydrobiological Studies 33: 95–104.Google Scholar
  27. Kelly, M. G. & B. A. Whitton, 1995a. The trophic diatom index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7: 333–433.CrossRefGoogle Scholar
  28. Kelly, M. G. & B. A. Whitton, 1995b. The trophic diatom index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7: 333–433.CrossRefGoogle Scholar
  29. Kelly, M. G., A. Cazaubon, E. Coring, A. Dell’Uomo, L. Ector, B. Goldsmith, H. Guasch, J. Hürlimann, A. Jarlman, B. Kawecka, J. Kwandrans, R. Laugaste, E. A. Lindstrøm, M. Leitao, P. Marvan, J. Padisák, E. Pipp, J. Prygiel, E. Rott, S. Sabater, H. Van Dam & J. Vizinet, 1998. Recommendations for routine sampling of diatoms for water quality assessment in Europe. Journal of Applied Phycology 10: 215–224.CrossRefGoogle Scholar
  30. Kelly, M., L. King & B. Ní Chatháin, 2009. The conceptual basis of ecological-status assessments using diatoms. Biology and Environment: Proceedings of the Royal Irish Academy 109B: 175–189.CrossRefGoogle Scholar
  31. Krammer, K., 2002. Cymbella. In Lange-Bertalot, H. (ed.), Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats, Vol 3. A.R.G. Gantner Verlag K.G, Ruggell: 584 pp.Google Scholar
  32. Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae 1. Teil: Naviculaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa. Gustav Fischer, Stuttgart: 876 pp.Google Scholar
  33. Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa. Gustav Fischer, Stuttgart: 596 pp.Google Scholar
  34. Krammer, K. & H. Lange-Bertalot, 1991a. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Die Süßwasserflora von Mitteleuropa. Gustav Fischer, Stuttgart, Jena: 576 pp.Google Scholar
  35. Krammer, K. & H. Lange-Bertalot, 1991b. Bacillariophyceae 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. Gesamtliteraturverzeichnis Teil 1–4. In Ettl, H., G. Gärtner, J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa. Gustav Fischer, Stuttgart: 437 pp.Google Scholar
  36. Lange-Bertalot, H., 2001. Navicula sensu stricto. 10 genera separated from Navicula sensu lato. Frustulia. In Lange-Bertalot, H. (ed.), Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats, Vol 2. A.R.G. Gantner Verlag K.G., Ruggell: 526 pp.Google Scholar
  37. Lenoir, C. & M. Coste, 1996. Development of a practical diatom index of overall water quality applicable to the French national water board network. In Whitton, B. A. & E. Rott (eds), Use of Algae for Monitoring Rivers II. Institut für Botanik, Universität Innsbruck, Innsbruck: 29–43.Google Scholar
  38. Linke, S., R. H. Norris, D. P. Faith & D. Stockwell, 2005. ANNA: a new prediction method for bioassessment programs. Freshwater Biology 50: 147–158.CrossRefGoogle Scholar
  39. Norris, R. H. & C. P. Hawkins, 2000. Monitoring river health. Hydrobiologia 435: 5–17.Google Scholar
  40. Pan, Y., R. J. Stevenson, B. H. Hill, P. R. Kaufmann & A. T. Herlihy, 1999. Spatial patterns and ecological determinants of benthic algal assemblages in mid-Atlantic streams, USA. Journal of Phycology 35: 460–468.CrossRefGoogle Scholar
  41. Parsons, N. & R. H. Norris, 1996. The effect of habitat-specific sampling on biological assessment of water quality using a predictive model. Freshwater Biology 36: 419–434.CrossRefGoogle Scholar
  42. Philibert, A., P. Gell, P. Newall, B. Chessman & N. Bate, 2006. Development of diatom-based tools for assessing stream water quality in south-eastern Australia: assessment of environmental transfer functions. Hydrobiologia 572: 103–114.CrossRefGoogle Scholar
  43. Pont, D., B. Hugueny, U. Beier, D. Goffaux, A. Melcher, R. Noble, C. Rogers, N. Roset & S. Schmutz, 2006. Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages. Journal of Applied Ecology 43: 70–80.CrossRefGoogle Scholar
  44. Potapova, M., 1996. Epilithic algal communities in rivers of the Kolyma Mountains, NE Siberia, Russia. Nova Hedwigia 63: 309–334.Google Scholar
  45. Potapova, M. & D. F. Charles, 2003. Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition. Freshwater Biology 48: 1311–1328.CrossRefGoogle Scholar
  46. Potapova, M. & D. F. Charles, 2007. Diatom metrics for monitoring eutrophication in rivers of the United States. Ecological Indicators 7: 48–70.CrossRefGoogle Scholar
  47. Reynoldson, T. B., 1995. Biological guidelines for freshwater sediment based on benthic assessment of sediment (the BEAST) using a multivariate approach for predicting biological state. Australian Journal of Ecology 20: 198–219.CrossRefGoogle Scholar
  48. Reynoldson, T. B., R. H. Norris, V. H. Resh, K. E. Day & D. M. Rosenberg, 1997. The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. Journal of the North American Benthological Society 16: 833–852.CrossRefGoogle Scholar
  49. Rimet, F., 2009. Benthic diatom assemblages and their correspondence with ecoregional classifications: case study of rivers in north-eastern France. Hydrobiologia 636: 137–151.CrossRefGoogle Scholar
  50. Rosén, P., R. Hall, T. Korsman & I. Renberg, 2000. Diatom transfer-functions for quantifying past air temperature, pH and total organic carbon concentration from lakes in northern Sweden. Journal of Paleolimnology 24: 109–123.CrossRefGoogle Scholar
  51. Round, F. E., R. M. Crawford & D. G. Mann, 1990. The Diatoms. Biology & Morphology of the Genera. Cambridge University Press, Cambridge: 747 pp.Google Scholar
  52. Sabater, S., 2000. Diatom communities as indicators of environmental stress in the Guadiamar River, W. Spain, following a major mine tailings spill. Journal of Applied Phycology 12: 113–124.CrossRefGoogle Scholar
  53. Simpson, J. C. & R. H. Norris, 2000. Biological assessment of river quality: development of AUSRIVAS models and outputs. In Wright, J. F., D. W. Sutcliffe & M. T. Furse (eds), Assessing the Biological Quality of Fresh Waters: RIVPACS and Other Techniques. Freshwater Biological Association, Ambleside: 125–142.Google Scholar
  54. Sládeček, V., 1986. Diatoms as indicators of organic pollution. Acta Hydrochimica et Hydrobiologica 14: 555–566.CrossRefGoogle Scholar
  55. Soininen, J., 2004. Assessing the current related heterogeneity and diversity patterns of benthic diatom communities in a turbid and a clear water river. Aquatic Ecology 38: 495–501.CrossRefGoogle Scholar
  56. The European Parliament & European Council, 2000. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy. Official Journal of the European Communities L327: 1–73.Google Scholar
  57. Tison, J., Y.-S. Park, M. Coste, J. G. Wasson, F. Rimet, L. Ector & F. Delmas, 2005. Typology of diatom communities and the influence of hydro-ecoregions: a study on French hydrosystem scale. Water Research 39: 3177–3188.PubMedCrossRefGoogle Scholar
  58. Tison, J., Y.-S. Park, M. Coste, J. G. Wasson, F. Rimet, L. Ector & F. Delmas, 2007. Predicting diatom reference communities at the French hydrosystem scale: A first step towards the definition of the good ecological status. Ecological Modelling 203: 99–108.CrossRefGoogle Scholar
  59. Tornés, E., 2009. Distributional Patterns of Diatom Communities in Mediterranean Rivers. Ph.D. Dissertation. University of Girona, Spain: 154 pp, +4 annexes.Google Scholar
  60. Tornés, E., J. Cambra, J. Gomà, M. Leira, R. Ortiz & S. Sabater, 2007. Indicator taxa of benthic diatom communities: a case study in Mediterranean streams. Annales de Limnologie – International Journal of Limnology 43: 1–11.Google Scholar
  61. Van Dam, H., A. Mertens & J. Sinkeldam, 1994. A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Netherlands Journal of Aquatic Ecology 28: 117–133.CrossRefGoogle Scholar
  62. Veraart, A. J., A. M. Romaní, E. Tornés & S. Sabater, 2008. Algal response to nutrient enrichment in forested oligotrophic stream. Journal of Phycology 44: 564–572.CrossRefGoogle Scholar
  63. Wright, J. F., 1995. Development and use of a system for predicting macroinvertebrates in flowing waters. Australian Journal of Ecology 20: 181–197.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Biology, GeoBioTec–GeoBioSciences, Geotechnologies and Geoengineering Research CenterUniversity of AveiroAveiroPortugal
  2. 2.Department of Life Sciences, Institute of Marine ResearchUniversity of CoimbraCoimbraPortugal

Personalised recommendations