Advertisement

Hydrobiologia

, Volume 691, Issue 1, pp 203–212 | Cite as

Experimental evidence for niche segregation in a sister species pair of non-biting midges

  • Sabrina Nemec
  • Maren Heß
  • Carsten Nowak
  • Markus Pfenninger
Primary research paper

Abstract

The principle of limiting similarity states that closely related species need to partition resources of the habitat in order to coexist in the same general area. We tested this hypothesis experimentally with a sister species pair of non-biting midges (Chironomus riparius and C. piger) by assessing their relative larval fitness under several concentrations of nitrite and temperature regimes, as suggested by the observed habitat segregation in a previous field study. Both chironomid species often occur in eutrophic habitats like agricultural areas or industrial point source effluents. Based on field observations, we hypothesised C. piger to tolerate higher nitrite concentrations, higher temperatures and larger temperature ranges than C. riparius. As predicted, C. piger coped better with higher nitrite concentrations. Against the expectations, C. riparius had a tendentially higher fitness at both higher constant temperatures and larger daily temperature ranges. However, the interaction of both stressors favoured C. piger in warm high-nitrite habitats thus concurring to the field observations. The complex interaction of candidate environmental factors with antagonistic effects found here emphasises thus the necessity to experimentally assess field observations of niche segregation.

Keywords

Chironomidae Niche partitioning Nitrite Temperature Life-cycle experiments 

Notes

Acknowledgments

The kind assistance of Lucas Jagodzinski, Christiane Frosch and the staff of the Departments Aquatic Ecotoxicology and Ecology & Evolution of the Goethe-Universität Frankfurt am Main is greatly appreciated. We also thank Christian Abel and Simit Patel for language corrections. This research project has been funded by the research funding programme “LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research, and the Arts.

References

  1. Albrecht, M. & N. J. Gotelli, 2001. Spatial and temporal niche partitioning in grassland ants. Oecologia 126: 134–141.CrossRefGoogle Scholar
  2. Alonso, A. & J. A. Camargo, 2003. Short-term toxicity of ammonia, nitrite, and nitrate to the aquatic snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca). Bulletin of Environmental Contamination and Toxicology 70: 1006–1012.PubMedCrossRefGoogle Scholar
  3. Amarasekare, P., 2003. Competitive coexistence in spatially structured environments: a synthesis. Ecology Letters 6: 1109–1122.CrossRefGoogle Scholar
  4. Armitage, P. D., P. S. Cranston & L. C. V. Pinder, 1995. The chironomidae: the biology and ecology of non-biting midges. Chapman & Hall, London.Google Scholar
  5. Arthur, W., 1987. The niche in competition and evolution. Wiley, New York.Google Scholar
  6. Atkins, P. & J. De Paula, 2006. Physical chemistry. Oxford University Press, New York.Google Scholar
  7. Attrill, M. J. & M. Power, 2004. Partitioning of temperature resources amongst an estuarine fish assemblage. Estuarine Coastal and Shelf Science 61: 725–738.CrossRefGoogle Scholar
  8. Bechard, K. M., P. L. Gillis & C. M. Wood, 2008. Acute toxicity of waterborne Cd, Cu, Pb, Ni, and Zn to first-instar Chironomus riparius larvae. Archives of Environmental Contamination and Toxicology 54: 454–459.PubMedCrossRefGoogle Scholar
  9. Braun, V., R. R. Crichton & G. Braunitz, 1968. Hemoglobins.15. Monomeric and dimeric insect hemoglobins (Chironomus thummi). Hoppe-Seylers Zeitschrift Fur Physiologische Chemie 349: 197–210.CrossRefGoogle Scholar
  10. Danks, H. V., 1978. Some effects of photoperiod, temperature, and food on emergence in 3 species of Chironomidae (Diptera). Canadian Entomologist 110: 289–300.CrossRefGoogle Scholar
  11. Darwin, C., 1859. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London.Google Scholar
  12. Dietrich, B. & R. Wehner, 2003. Sympatry and allopatry in two desert ant sister species: how do Cataglyphis bicolor and C-savignyi coexist? Oecologia 136: 63–72.PubMedCrossRefGoogle Scholar
  13. Geervliet, J. B. F., M. S. W. Verdel, H. Snellen, J. Schaub, M. Dicke & L. E. M. Vet, 2000. Coexistence and niche segregation by field populations of the parasitoids Cotesia glomerata and C-rubecula in the Netherlands: predicting field performance from laboratory data. Oecologia 124: 55–63.CrossRefGoogle Scholar
  14. Gunderina, L. I., I. I. Kiknadze, A. G. Istomina, V. D. Gusev & L. A. Miroshnichenko, 2005. Divergence of the polytene chromosome banding sequences as a reflection of evolutionary rearrangements of the genome linear structure. Russian Journal of Genetics 41: 130–137.CrossRefGoogle Scholar
  15. Guryev, V., I. Makarevitch, A. Blinov & J. Martin, 2001. Phylogeny of the Genus Chironomus (Diptera) inferred from DNA sequences of mitochondrial cytochrome b and cytochrome oxidase I. Molecular Phylogenetics and Evolution 19: 9–21.PubMedCrossRefGoogle Scholar
  16. Haas, H. S. & K. Strenzke, 1957. Experimentelle untersuchungen über den Einfluß der ionalen Zusammensetzung des mediums auf die entwicklung der analpapillen von Chironomus thummi. Biologisches Zentralblatt 76: 513–528.Google Scholar
  17. Hommen, U., 2005. Ableitung von populationswachstumsraten aus Lebensdatenstudien mit Chironomus riparius. Frauenhofer Institut für Molekularbiologie und angewandte Ökologie, Schmallenberg.Google Scholar
  18. Hutchinson, G. E., 1957. Population studies – animal ecology and demography – concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415–427.CrossRefGoogle Scholar
  19. Kahlert, M. & D. Neumann, 1997. Early development of freshwater sponges under the influence of nitrite and pH. Archiv für Hydrobiologie 139: 69–81.Google Scholar
  20. Kelso, B. H. L., D. M. Glass & R. V. Smith, 1999. Toxicity of nitrite to freshwater invertebrates. In Wilson, W. S., A. S. Ball & R. H. Hinton (eds), Managing risks of nitrates to human and the environ environment. Royal Society of Chemistry, Cambridge: 175–188.Google Scholar
  21. Langeland, A., J. H. Abeelund, B. Jonsson & N. Jonsson, 1991. Resource partitioning and Niche shift in Arctic Charr Salvelinus-alpinus and Brown Trout Salmo-trutta. Journal of Animal Ecology 60: 895–912.CrossRefGoogle Scholar
  22. Maier, K. J., P. Kosalwat & A. W. Knight, 1990. Culture of Chironomus decorus (Diptera, Chironomidae) and the effect of temperature on its life-history. Environmental Entomology 19: 1681–1688.Google Scholar
  23. Mayr, E., 1942. Systematics and the origin of species. Dover Publications, New York.Google Scholar
  24. McArthur, R. L. & R. Levins, 1967. The limiting similarity, convergence and divergence of coexisting species. American Naturalist 101: 377–385.CrossRefGoogle Scholar
  25. McLachlan, A., 1993. Can 2 species of midge coexist in a single puddle of rainwater. Hydrobiologia 259: 1–8.CrossRefGoogle Scholar
  26. Meszena, G., M. Gyllenberg, L. Pasztor & J. A. J. Metz, 2006. Competitive exclusion and limiting similarity: a unified theory. Theoretical Population Biology 69: 68–87.PubMedCrossRefGoogle Scholar
  27. Nebeker, A. V., M. A. Cairns & C. M. Wise, 1984. Relative sensitivity of Chironomus-tentans life stages to copper. Environmental Toxicology and Chemistry 3: 151–158.Google Scholar
  28. Nemec, S., 2009. Einfluss ausgewählter abiotischer Faktoren auf die relative Fitness der Schwesterarten Chironomus riparius und Chironomus piger. Diploma thesis. Goethe University, Frankfurt am Main.Google Scholar
  29. Neumann, D., M. Kramer, I. Raschke & B. Grafe, 2001. Detrimental effects of nitrite on the development of benthic Chironomus larvae, in relation to their settlement in muddy sediments. Archiv für Hydrobiologie 153: 103–128.Google Scholar
  30. Nowak, C., D. Jost, C. Vogt, M. Oetken, K. Schwenk & J. Oehlmann, 2007a. Consequences of inbreeding and reduced genetic variation on tolerance to cadmium stress in the midge Chironomus riparius. Aquatic Toxicology 85: 278–284.PubMedCrossRefGoogle Scholar
  31. Nowak, C., C. Vogt, J. B. Diogo & K. Schwenk, 2007b. Genetic impoverishment in laboratory cultures of the test organism Chironomus riparius. Environmental Toxicology and Chemistry 26: 1018–1022.PubMedCrossRefGoogle Scholar
  32. Nowak, C., C. Vogt, M. Pfenninger, K. Schwenk, J. Oehlmann, B. Streit & M. Oetken, 2009. Rapid genetic erosion in pollutant-exposed experimental chironomid populations. Environmental Pollution 157: 881–886.PubMedCrossRefGoogle Scholar
  33. OECD. (2004) Sediment-water chironomid toxicity test using spiked water. OECD guidelines for the testing of chemicals (Original guideline 219, adopted 13 Apr 2004).Google Scholar
  34. Oliver, D. R., 1971. Life history of Chironomidae. Annual Review of Entomology 16: 211–230.CrossRefGoogle Scholar
  35. Pery, A. R. R. & J. Garric, 2006. Modelling effects of temperature and feeding level on the life cycle of the midge Chironomus riparius: an energy-based modelling approach. Hydrobiologia 553: 59–66.CrossRefGoogle Scholar
  36. Pfenninger, M. & C. Nowak, 2008. Reproductive isolation and ecological niche partition among larvae of the morphologically cryptic sister species Chironomus riparius and C. piger. PLoS ONE 3: e2157.PubMedCrossRefGoogle Scholar
  37. Pfenninger, M., C. Nowak, C. Kley, D. Steinke & B. Streit, 2007. Utility of DNA taxonomy and barcoding for the inference of larval community structure in morphologically cryptic Chironomus (Diptera) species. Molecular Ecology 16: 1957–1968.PubMedCrossRefGoogle Scholar
  38. Sankarperumal, G. & T. J. Pandian, 1991. Effect of temperature and chlorella density on growth and metamorphosis of Chironomus circumdatus (Kieffer) (Diptera). Aquatic Insects 13: 167–177.CrossRefGoogle Scholar
  39. Sher, R. B. & E. J. Shields, 1991. Potato leafhopper (Homoptera, Cicadellidae) oviposition and development under cool fluctuating temperatures. Environmental Entomology 20: 1113–1120.Google Scholar
  40. Sibly, R. M. & J. Hone, 2002. Population growth rate and its determinants: an overview. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 357: 1153–1170.CrossRefGoogle Scholar
  41. Stevens, M. M., 1998. Development and survival of Chironomus tepperi Skuse (Diptera: Chironomidae) at a range of constant temperatures. Aquatic Insects 20: 181–188.CrossRefGoogle Scholar
  42. Stief, P., D. De Beer & D. Neumann, 2002. Small-scale distribution of interstitial nitrite in freshwater sediment microcosms: the role of nitrate and oxygen availability, and sediment permeability. Microbial Ecology 43: 367–378.PubMedCrossRefGoogle Scholar
  43. Strenzke, K., 1960. Die systematische und ökologische differenzierung der gattung Chironomus. Annales Entomologici Fennici 26: 111–139.Google Scholar
  44. Svensson, J. M., 1998. Emission of N2O, nitrification and denitrification in a eutrophic lake sediment bioturbated by Chironomus plumosus. Aquatic Microbial Ecology 14: 289–299.CrossRefGoogle Scholar
  45. Thienemann, A., 1974. Die Binnengewässer. Band XX: Chironomus. E. Schweizerbart′sche Verlagsbuchhandlung, Stuttgart.Google Scholar
  46. Tokeshi, M., 1995. Randomness and aggregation – analysis of dispersion in an epiphytic Chironomus community. Freshwater Biology 33: 567–578.CrossRefGoogle Scholar
  47. Toquenaga, Y. & K. Fujii, 1991. Contest and scramble competitions in 2 Bruchid species, Callosobruchus analis and C-Phaseoli (Coleoptera, Bruchidae).2. Larval competition experiment. Researches on Population Ecology 33: 129–139.CrossRefGoogle Scholar
  48. Trewitt, P. M., R. A. Luhm, F. Samad, S. Ramakrishnan, W. Y. Kao & G. Bergtrom, 1995. Molecular evolutionary analysis of the YWVZ/7B Globin gene-cluster of the insect Chironomus thummi. Journal of Molecular Evolution 41: 313–328.PubMedCrossRefGoogle Scholar
  49. Vogt, C., D. Belz, S. Galluba, C. Nowak, M. Oetken & J. Oehlmann, 2007a. Effects of cadmium and tributyltin on development and reproduction of the non-biting midge Chironomus riparius (Diptera) – baseline experiments for future multi-generation studies. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering 42: 1–9.CrossRefGoogle Scholar
  50. Vogt, C., C. Nowak, J. B. Diogo, M. Oetken, K. Schwenk & J. Oehlmann, 2007b. Multi-generation studies with Chironomus riparius – effects of low tributyltin concentrations on life history parameters and genetic diversity. Chemosphere 67: 2192–2200.PubMedCrossRefGoogle Scholar
  51. Vogt, C., A. Pupp, C. Nowak, L. S. Jagodzinski, J. Baumann, D. Jost, M. Oetken & J. Oehlmann, 2007c. Interaction between genetic diversity and temperature stress on life-cycle parameters and genetic variability in midge Chironomus riparius populations. Climate Research 33: 207–214.CrossRefGoogle Scholar
  52. Wiens, J. J. & C. H. Graham, 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual review of ecology evolution and systematics. Annual Review of Ecology Evolution and Systematics 36: 519–539.CrossRefGoogle Scholar
  53. Williams, K. A., D. W. J. Green, D. Pascoe & D. E. Gower, 1986. The Acute toxicity of cadmium to different larval stages of Chironomus-riparius (Diptera, Chironomidae) and its ecological significance for pollution regulation. Oecologia 70: 362–366.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sabrina Nemec
    • 1
    • 2
  • Maren Heß
    • 3
    • 4
  • Carsten Nowak
    • 2
  • Markus Pfenninger
    • 1
  1. 1.Molecular Ecology GroupBiodiversity and Climate Research Centre (BiK-F) by Senckenberg Gesellschaft für Naturforschung and Goethe UniversityFrankfurt am MainGermany
  2. 2.Conservation Genetics GroupSenckenberg Research Institutes and Natural History MuseumsGelnhausenGermany
  3. 3.Department of Aquatic Ecotoxicology, Faculty of Biological SciencesGoethe University Frankfurt am MainFrankfurt am MainGermany
  4. 4.Institute for HydrobiologyTechnische Universität DresdenDresdenGermany

Personalised recommendations