, Volume 691, Issue 1, pp 171–188 | Cite as

Assessing the condition of the Missouri, Ohio, and Upper Mississippi rivers (USA) using diatom-based indicators

  • Amy R. Kireta
  • Euan D. Reavie
  • Gerald V. Sgro
  • Ted R. Angradi
  • David W. Bolgrien
  • Terri M. Jicha
  • Brian H. Hill
Primary Research Paper


Diatom-based indicators were developed to assess environmental conditions in the Missouri, Ohio, and Upper Mississippi rivers. Disturbance gradients, comprising the first two principal components derived from a suite of stressor variables, included a trophic gradient (Trophic) and a gradient reflecting agriculture and other development activities (Ag/Dev). Diatom-based indicators were developed by creating models using weighted average calibration and regression-based transfer functions to relate planktonic and periphytic diatom species assemblages to each disturbance gradient. The most predictive disturbance models combined phytoplankton and periphyton assemblages into a single bioindicator model (observed versus inferred: Trophic \( r_{\text{boot}}^{2} = 0. 5 6 \); Ag/Dev \( r_{\text{boot}}^{2} = 0. 7 0 \)). The geographic applicability of bioindicators was assessed by limiting sample geographical range during model calibrations. Geographic scale was limited by creating bioindicators using samples from: (a) each river, and (b) combined Mississippi/Missouri samples excluding Ohio River sites which were chemically unique. Indicator performance decreased with geographically restrictive models, therefore river basin-wide models, developed across all three rivers, is recommended. The most effective diatom-based disturbance bioindicators for this great river ecosystem could be applied using phytoplankton, periphyton, or combined assemblages to infer both trophic and agriculture/development disturbances.


Diatoms Great rivers Monitoring Transfer functions 



Special thanks to Adam Heathcote and Steve Juggins for statistical support and suggestions. We would like to thank all of our EMAP-GRE colleagues for their contributions including: field crews for sample collection and field measures, the EPA Mid-Continent Ecology Division lab in Duluth, Minnesota for chemical analyses, and K. Kennedy and L. Allinger for slide preparations. This study was supported by a grant to E. Reavie from the US Environmental Protection Agency under cooperative agreement CR-83272401. This document has not been subjected to the Agency’s required peer and policy review and therefore does not necessarily reflect the view of the Agency, and no official endorsements should be inferred. This is contribution number 534 of the Center for Water and the Environment, Natural Resources Research Institute, University of Minnesota Duluth.

Supplementary material

10750_2012_1067_MOESM1_ESM.pdf (22 kb)
Supplementary material 1 (PDF 23 kb)
10750_2012_1067_MOESM2_ESM.xlsx (87 kb)
Supplementary material 2 (XLSX 87 kb)


  1. Angradi, T. R. (ed.), 2006. Environmental monitoring and assessment program: great river ecosystems field operations manual. EPA/620/R-06/002. US Environmental Protection Agency, Office of Research and Development, Washington, DC: 217 pp [available on internet at]. Accessed 7 May 2011.
  2. Angradi, T. R., D. W. Bolgrien, T. M. Jicha, M. S. Pearson, B. H. Hill, D. L. Taylor, E. W. Schweiger, L. Shepard, A. R. Batterman, M. F. Moffett, C. M. Elonen & L. E. Anderson, 2008. A bioassessment approach for midcontinent great rivers: the Upper Mississippi, Missouri, and Ohio (USA). Environmental Monitoring Assessment 152: 425–442.CrossRefGoogle Scholar
  3. Angradi, T. R., D. W. Bolgrien, T. M. Jicha, M. S. Pearson, D. L. Taylor & B. H. Hill, 2009a. Multispatial-scale variation in benthic and snag-surface macroinvertebrate assemblages in mid-continent USA great rivers. Journal of the North American Benthological Society 28: 122–141.CrossRefGoogle Scholar
  4. Angradi, T. R., M. S. Pearson, T. M. Jicha, D. L. Taylor, D. W. Bolgrien, M. F. Moffett, K. A. Blocksom & B. H. Hill, 2009b. Using stressor gradients to determine reference expectations for great river fish assemblages. Ecological Indicators 9: 748–764.CrossRefGoogle Scholar
  5. Bate, N. & P. Newall, 2002. Techniques for the use of diatoms in water quality assessment: how many valves? In Proceedings of the 15th International Diatom Symposium, Perth, Australia, 28 September–2 October 1998: 153–160.Google Scholar
  6. Bernhardt, E. S., M. A. Palmer, J. D. Allan, G. Alexander, K. Barnas, S. Brooks, J. Carr, S. Clayton, C. Dahm, J. Follstad-Shah, D. Galat, S. Gloss, P. Goodwin, D. Hart, B. Hassett, R. Jenkinson, S. Katz, G. M. Kondolf, P. S. Lake, R. Lave, J. L. Meyer, T. K. O’Donnell, L. Pagano, B. Powell & E. Sudduth, 2005. Synthesizing U.S. river restoration efforts. Science 308: 636–637.PubMedCrossRefGoogle Scholar
  7. Biggs, B. J. F., 1996. Pattern of benthic algae of streams. In Stevenson, J. R., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego: 31–56.Google Scholar
  8. Birks, H. J. B., 1995. Quantitative paleoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds), Statistical Modelling of Quaternary Science Data, Tech Guide 5. Quaternary Research Association, Cambridge: 161–254.Google Scholar
  9. Birks, H. J. B., 1998. Numerical tools in paleolimnology—progress, potentialities and problems. Journal of Paleolimnology 20: 307–332.CrossRefGoogle Scholar
  10. Birks, H. J. B., 2010. Numerical methods for the analysis of diatom assemblage data. In Smol, J. P. & E. F. Stoermer (eds), The Diatoms: Applications for the Environmental and Earth Sciences, 2nd ed. Cambridge University Press, New York: 23–54.Google Scholar
  11. Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. Ter Braak, 1990. Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society of London B 327: 263–278.CrossRefGoogle Scholar
  12. Bradshaw, E. G., N. J. Anderson, J. P. Jensen & E. Jeppesen, 2002. Phosphorus dynamics in Danish lakes and the implications for diatom ecology and palaeoecology. Freshwater Biology 47: 1963–1975.CrossRefGoogle Scholar
  13. Camburn, K. E. & D. F. Charles, 2000. Diatoms of low-alkalinity lakes in the northeastern United States. In E. E. Spamer (ed.), Special publications 18. The Academy of Natural Sciences of Philadelphia, Philadelphia: 152 pp.Google Scholar
  14. Camburn, K. E., J. C. Kingston & D. F. Charles, 1984–1986. PIRLA diatom iconograph. PIRLA Unpublished Report Series 3. Indiana University, Bloomington.Google Scholar
  15. Charles, D. F., F. W. Acker, D. D. Hart, C. W. Reimer & P. B. Cotter, 2006. Large-scale regional variation in diatom-water chemistry relationships: rivers of the eastern United States. Hydrobiologia 561: 27–57.CrossRefGoogle Scholar
  16. Cumming, B. F., S. E. Wilson, R. I. Hall & J. P. Smol, 1995. Diatoms from British Columbia (Canada) lakes and their relationship to salinity, nutrients, and other limnological variables. Bibliotheca Diatomologica 31: 1–207.Google Scholar
  17. Dela-Cruz, J., T. Pritchard, G. Gorden & P. Ajani, 2006. The use of periphytic diatoms as a means of assessing impacts of point source inorganic nutrient pollution in south-eastern Australia. Freshwater Biology 51: 951–972.CrossRefGoogle Scholar
  18. Delgado, C., I. Pardo & L. García, 2010. A multimetric diatom index to assess the ecological status of coastal Galician rivers (NW Spain). Hydrobiologia 644: 371–384.CrossRefGoogle Scholar
  19. Denys, L., 2004. Relation of abundance-weighted averages of diatom indicator values to measured environmental conditions in standing freshwaters. Ecological Indicators 4: 255–275.CrossRefGoogle Scholar
  20. Detenbeck, N. E., D. L. Taylor, A. Lima & C. Hagley, 1996. Temporal and spatial variability in water quality of wetlands in the Minneapolis/St. Paul, MN metropolitan area: implications for monitoring strategies and designs. Environmental Monitoring Assessment 40: 11–40.CrossRefGoogle Scholar
  21. Dixit, S. S. & J. P. Smol, 1994. Diatoms as indicators in the environmental monitoring and assessment program-surface waters (EMAP-SW). Environmental Monitoring and Assessment 31: 275–306.Google Scholar
  22. Graf, W. L., 2001. Damage control: restoring the physical integrity of America’s Rivers. Annals of the Association of American Geographers 91: 1–27.CrossRefGoogle Scholar
  23. Hall, R. I. & J. P. Smol, 1992. A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwater Biology 7: 417–434.CrossRefGoogle Scholar
  24. Heiskary, S. & B. Wilson, 2008. Minnesota’s approach to lake nutrient criteria development. Lake and Reservoir Management 24: 282–297.CrossRefGoogle Scholar
  25. Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.CrossRefGoogle Scholar
  26. Hill, B. H., A. T. Herlihy, P. R. Kaufmann, R. J. Stevenson, F. H. McCormick & C. B. Johnson, 2000. Use of periphyton assemblage data as an index of biotic integrity. Journal of the North American Benthological Society 19: 50–67.CrossRefGoogle Scholar
  27. Hintze, J., 1998. NCSS 97. NCSS, Kaysville, UT [available on internet at]. Accessed 7 May 2011.
  28. Hodgkiss, I. J. & C. Y. Law, 1985. Relating diatom community structure and stream water quality using species diversity indices. Water Pollution Control 84: 134–139.Google Scholar
  29. Jackson, D. A., 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204–2214.CrossRefGoogle Scholar
  30. Johnson, B. L., T. J. Naimo & W. B. Richardson, 1995. Past present and future concepts in large river ecology: how rivers function and how human activities influence river processes. BioScience 45: 134–141.CrossRefGoogle Scholar
  31. Juggins, S., 2003. C2 User Guide. Software for Ecological and Palaeoecological Data Analysis and Visualization. University of Newcastle, Newcastle upon Tyne.Google Scholar
  32. Kelly, M. G. & B. A. Whitton, 1995. The trophic diatom index: a new index for monitoring eutrophication in river. Journal of Applied Phycology 7: 433–444.CrossRefGoogle Scholar
  33. Kelly, M. G., A. Cazaubon, E. Coring, A. Dell’Uomo, L. Ector, B. Goldsmith, H. Guasch, J. Hürlimann, A. Jarlman, B. Kawecka, J. Kwandrans, R. Laugaste, E.-A. Lindstrøm, M. Leitao, P. Marvan, J. Padisák, E. Pipp, J. Prygiel, E. Rott, S. Sabater, H. van Dam & J. Vizinet, 1998. Recommendations for the routine sampling of diatoms for water quality assessments in Europe. Journal of Applied Phycology 10: 215–224.CrossRefGoogle Scholar
  34. Kelly, M. G., S. Juggins, R. Gurthrie, S. Pritchard, J. Jamieson, B. Rippey, H. Hirst & M. Yallop, 2008a. Assessment of ecological status in U.K. rivers using diatoms. Freshwater Biology 53: 403–422.Google Scholar
  35. Kelly, M. G., L. King, R. I. Jones, P. A. Barker & B. J. Jamieson, 2008b. Validation of diatoms as proxies for phytobenthos when assessing ecological status in lakes. Hydrobiologia 610: 125–129.CrossRefGoogle Scholar
  36. Kireta, A. R., E. D. Reavie, N. P. Danz, R. P. Axler, G. V. Sgro, T. N. Brown & T. P. Hollenhorst, 2007. Coastal geomorphic and lake variability in the Laurentian Great Lakes: implications for a diatom-based monitoring tool. Journal of Great Lakes Research 33: 136–153.CrossRefGoogle Scholar
  37. Kireta, A. R., E. D. Reavie, G. V. Sgro, T. R. Angradi, D. W. Bolgrien, T. M. Jicha & B. H. Hill, 2011. Planktonic and periphytic diatom as indicators of stress on great rivers of the United States: testing water quality and disturbance models. Ecological Indicators 13: 222–231.CrossRefGoogle Scholar
  38. Krammer, K. & H. Lange-Bertalot, 1986–1991. Bacillariophyceae. In Ettl, J., J. Gerloff, H. Hyenig & D. Mollenhauer (eds), Susswasserflora von Mitteleuropa. Fischer, Stuttgart: 1–4.Google Scholar
  39. Mann, D. G., S. M. McDonald, M. M. Bayer, S. J. M. Droop, V. A. Chepurnov, R. E. Loke, A. Ciobanu & J. M. H. du Buf, 2004. The Sellaphora pupula species complex (Bacillariophyceae): morphometric analysis, ultrastructure and mating data provide evidence for five new species. Phycologia 43: 459–482.CrossRefGoogle Scholar
  40. McDonald, M., R. Blair, D. Bolgrien, B. Brown, J. Dlugosz, S. Hale, S. Hedtke, D. Heggem, L. Jackson, K. Jones, B. Levinson, R. Linthurst, J. Messer, A. Olsen, J. Paul, S. Paulsen, J. Stoddard, K. Summers & G. Veith, 2004. The US environmental protection agency’s environmental monitoring and assessment program. In Wiersma, G. B. (ed.), Environmental Monitoring. CRC Press, New York: 649–668.Google Scholar
  41. O’Brien, R. M., 2007. A caution regarding rules of thumb for variance inflation factors. Quality and Quantity 41: 673–690.CrossRefGoogle Scholar
  42. Oksanen, J., R. Kindt, P. Legendre, B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2009. vegan: Community Ecology Package, R package version 1.15-4 [available online at]. Accessed 7 May 2011.
  43. Patrick, R., 1949. A proposed biological measure of stream condition based on a survey of the Conestoga basin, Lancaster County, Pennsylvania. Proceedings of the Academy of Natural Sciences Philadelphia 101: 288–341.Google Scholar
  44. Patrick, R. & C. W. Reimer, 1966a. The Diatoms of the United States Exclusive of Alaska and Hawaii, No. 13, Vol. 1. Monographs of Natural Sciences of Philadelphia, Sutter House, PA.Google Scholar
  45. Patrick, R. & C. W. Reimer, 1966b. The Diatoms of the United States Exclusive of Alaska and Hawaii, Vol. 2. Monographs of Natural Sciences of Philadelphia, Sutter House, PA.Google Scholar
  46. Ponader, K. C., D. F. Charles & T. J. Belton, 2007. Diatom-based TP and TN inference models and indices for monitoring nutrient enrichment of New Jersey streams. Ecological Indicators 7: 79–93.CrossRefGoogle Scholar
  47. Ponader, K. C., D. F. Charles, T. J. Belton & D. M. Winter, 2008. Total phosphorus inference models and indices for coastal plan streams based on benthic diatom assemblages from artificial substrates. Hydrobiologia 610: 139–152.CrossRefGoogle Scholar
  48. Potapova, M. G. & D. F. Charles, 2003. Distribution of benthic diatom in U.S. rivers in relation to conductivity and ionic composition. Freshwater Biology 48: 1311–1328.CrossRefGoogle Scholar
  49. Potapova, M. G. & D. F. Charles, 2007. Diatom metrics for monitoring eutrophication in rivers of the United States. Ecological Indicators 7: 48–70.CrossRefGoogle Scholar
  50. Prygiel, J. & M. Coste, 1993. The assessment of water quality in the Artois-Picardie water basin (France) by the use of diatom indices. Hydrobiologia 269(270): 343–349.CrossRefGoogle Scholar
  51. R Development Core Team, 2009. R: A Language and Environment for Statistical Computing. R Foundation for Statistical computing, Vienna. ISBN 3-9000051-07-0 [available on internet at]. Accessed 7 May 2011.
  52. Reavie, E. D. & J. P. Smol, 1998. Freshwater diatoms from the St. Lawrence River. Bibliotheca Diatomologica 43: 224–225.Google Scholar
  53. Reavie, E. D. & M. B. Edlund, 2010. Diatoms as indicators of environmental change in rivers, fluvial lakes and impoundments. In Smol, J. P. & E. F. Stoermer (eds), The Diatoms: Applications for the Environmental and Earth Sciences, 2nd ed. Cambridge University Press, New York: 86–97.Google Scholar
  54. Reavie, E. D., T. M. Jicha, T. R. Angradi & B. H. Hill, 2010. Algal assemblages for large river monitoring: comparison among biovolume, absolute, and relative abundance metrics. Ecological Indicators 10: 167–177.CrossRefGoogle Scholar
  55. Reichardt, E., 1999. Zur revision der gattung Gomphonema. Die arten um G. affine/insigne, G. angustatum/micropus, G. acuminatum, sowie gomphonemoide diatomeed aus dem Oberoligozän in Böhem. In Lange-Bertalot, H. (ed.), Iconographia Diatomologica. Annotated Diatom Micrographs, Vol. 8. Taxonomy. Koeltz Scientific Books, Königstein: 203 pp.Google Scholar
  56. Rott, E., 1991. Methodological aspects and perspectives in the use of periphyton for monitoring and protecting rivers. In Whitton, B. A., E. Rott & G. Friedrich (eds), Use of Algae for Monitoring Rivers. Institute of Botany, University of Innsbruck, Austria: 9–16.Google Scholar
  57. Rott, E., E. Pipp & P. Pfister, 2003. Diatom methods developed for river quality assessment in Austria and a cross-check against numerical trophic indication methods used in Europe. Algological Studies 110: 91–115.CrossRefGoogle Scholar
  58. Round, F. E., 1991. Diatoms in river water-monitoring studies. Journal of Applied Phycology 3: 129–145.CrossRefGoogle Scholar
  59. Schweiger, E. W., D. W. Bolgrien, T. R. Angradi & J. R. Kelly, 2004. Environmental monitoring and assessment of a great river ecosystem: the upper Missouri River pilot. Environmental Monitoring and Assessment 103: 5–20.Google Scholar
  60. Seegert, G., 2000. Considerations regarding development of index of biotic integrity metrics for large rivers. Environmental Science & Policy 3: S99–S106.CrossRefGoogle Scholar
  61. Smith, R. A., R. B. Alexander & G. E. Schwarz, 2003. Natural background concentrations of nutrients in streams and rivers of the conterminous United States. Environmental Science and Technology 37: 3039–3047.PubMedCrossRefGoogle Scholar
  62. Soininen, J. & P. Niemelä, 2002. Inferring the phosphorus levels of rivers from benthic diatoms using weighted averaging. Archiv für Hydrobiologie 154: 1–18.Google Scholar
  63. Stevenson, R. J., 1997. Scale dependent determinants and consequences of benthic algal heterogeneity. Journal of the North American Benthological Society 16: 248–262.CrossRefGoogle Scholar
  64. Stevenson, R. J., Y. Pan, K. M. Manoylov, C. A. Parker, D. P. Larsen & A. T. Herlihy, 2008. Development of diatom indicators of ecological conditions for streams of the western US. Journal of the North American Benthological Society 27: 1000–1016.CrossRefGoogle Scholar
  65. Stevenson, R. J., Y. Pan & H. van Dam, 2010. Assessing environmental conditions in rivers and streams with diatoms. In Stoermer, E. F. & J. P. Smol (eds), The Diatoms: Applications to the Environmental and Earth Sciences, 2nd ed. Cambridge University Press, Cambridge: 57–85.Google Scholar
  66. Stoermer, E. F., R. G. J. Kreis & N. A. Andresen, 1999. Checklist of diatoms from the Laurentian Great Lakes. Journal of Great Lakes Research 25: 515–566.CrossRefGoogle Scholar
  67. ter Braak, C. J. F. & S. Juggins, 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269(270): 485–502.CrossRefGoogle Scholar
  68. ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca: 500 pp.Google Scholar
  69. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  70. Watanabe, T., K. Asai & A. Houki, 1988. Numerical water quality monitoring of organic pollution using diatom assemblages. In Round, F. E. (ed.), Proceedings of the 9th Diatom Symposium. Biopress Ltd., Bristol: 123–141.Google Scholar
  71. Whitton, B. A. & M. G. Kelly, 1995. Use of algae and other plants for monitoring rivers. Australian Journal of Ecology 20: 45–56.CrossRefGoogle Scholar
  72. Williams, L. G., 1964. Possible relationships between plankton diatom species numbers and water-quality estimates. Ecology 45: 809–823.CrossRefGoogle Scholar
  73. Winter, J. G. & H. C. Duthie, 2000. Epilithic diatoms as indicators of stream total N and total P concentration. Journal of the North American Benthological Society 19: 32–49.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Amy R. Kireta
    • 1
  • Euan D. Reavie
    • 1
  • Gerald V. Sgro
    • 2
  • Ted R. Angradi
    • 3
  • David W. Bolgrien
    • 3
  • Terri M. Jicha
    • 3
  • Brian H. Hill
    • 3
  1. 1.Center for Water and the Environment, Natural Resources Research InstituteUniversity of Minnesota DuluthElyUSA
  2. 2.Department of BiologyJohn Carroll UniversityUniversity HeightsUSA
  3. 3.Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology DivisionUS Environmental Protection AgencyDuluthUSA

Personalised recommendations