, Volume 698, Issue 1, pp 147–159 | Cite as

Phytoplankton dynamics in permanent and temporary Mediterranean waters: is the game hard to play because of hydrological disturbance?

  • Luigi Naselli-Flores
  • Rossella Barone


Only few scientific investigations have been carried out, to our knowledge, on phytoplankton in Mediterranean temporary ponds. To test the hypothesis that climate forcing is the main factor affecting dynamics and structure of planktic algae in these peculiar ecosystems, and to assess the importance of human impacts on this basic component of the aquatic biota, phytoplankton structure and dynamics were analysed in two temporary, long lasting (9 months), ponds, and in a permanent one. The three studied water bodies can be classified as meso-eutrophic, which show extended macrophyte beds and are subjected to one or more human impacts, such as eutrophication, fish and plant introduction, and garbage pollution. Phytoplankton samples were collected monthly over two different periods in each pond. The identified phytoplankton taxa were grouped in functional coda and non-parametric ordination methods were used to analyse their annual patterns. Results showed a well-defined sequence of coda, which followed a common seasonal pattern in all the studied ponds, when the ordination techniques were applied to a singular water body. This pattern was overlapping in the three studied environments without apparent influence exerted either by the environmental typology (e.g. permanent or temporary) or by human impacts. However, when the analyses were carried out by means of a single matrix containing the coda shared by all the studied environments, they formed a cluster separating the single ponds rather than following common/overlapping seasonal patterns. The results suggest that local effects, particularly the specific composition and richness of phytoplankton assemblages, are as important as climate constraints.


Mediterranean temporary pond Functional classification Coda Metaphyton Rare species 

Supplementary material

10750_2012_1059_MOESM1_ESM.pdf (41 kb)
Supplementary material 1 (PDF 41 kb)


  1. Amalfitano, S., S. Fazi, A. Zoppini, A. Barra Caracciolo, P. Grenni & A. Puddu, 2008. Responses of benthic bacteria to experimental drying in sediments from Mediterranean temporary rivers. Microbial Ecology 55: 270–279.PubMedCrossRefGoogle Scholar
  2. Barone, R., G. Castelli & L. Naselli-Flores, 2010. Red sky at night Cyanobacteria delight: the role of climate in structuring phytoplankton assemblage in a shallow, Mediterranean lake (Biviere di Gela, southeastern Sicily). Hydrobiologia 639: 43–53.CrossRefGoogle Scholar
  3. Battle, J. M. & T. B. Mihuc, 2000. Decomposition dynamics of aquatic macrophytes in the lower Atchafalaya, a large floodplain river. Hydrobiologia 418: 123–136.CrossRefGoogle Scholar
  4. Borics, G., B. Tóthmérész, I. Grigorszky, J. Padisák, G. Várbíró & S. Szabó, 2003. Algal assemblage types of boglakes in Hungary and their relation to water chemistry, hydrological conditions and habitat diversity. Hydrobiologia 502: 145–155.CrossRefGoogle Scholar
  5. Cancela da Fonseca, L., M. Cristo, M. Machado, J. Sala, J. Reis, R. Alcazar & P. Beja, 2008. Mediterranean temporary ponds in Southern Portugal: key faunal groups as management tools? Pan-American Journal of Aquatic Sciences 3: 304–320.Google Scholar
  6. Céréghino, R., J. Biggs, B. Oertli & S. Declerck, 2008. The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597: 1–6.CrossRefGoogle Scholar
  7. Chrisostomou, A., M. Moustaka-Gouni, S. Sgardelis & T. Lanaras, 2009. Air-dispersed phytoplankton in a Mediterranean river-reservoir system (Aliakmon-Polyphytos, Greece). Journal of Plankton Research 31: 877–884.CrossRefGoogle Scholar
  8. Cunha Pereira, H., N. Allott & C. Coxon, 2010. Are seasonal lakes as productive as permanent lakes? A case study from Ireland. Canadian Journal of Fisheries and Aquatic Sciences 67: 1291–1302.CrossRefGoogle Scholar
  9. De Meester, L., S. Declerck, R. Stoks, G. Louette, F. van De Meutter, T. De Bie, E. Michels & L. Brendonck, 2005. Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 715–725.CrossRefGoogle Scholar
  10. Dimitriou, E., E. Moussoulis, F. Stamati & N. Nikolaidis, 2009. Modelling hydrological characteristics of Mediterranean temporary ponds and potential impacts from climate change. Hydrobiologia 634: 195–208.CrossRefGoogle Scholar
  11. Fazi, S., S. Amalfitano, C. Piccini, A. Zoppini, A. Puddu & J. Pernthaler, 2008. Colonization of overlaying water by bacteria from dry river sediments. Environmental Microbiology 10: 2760–2772.PubMedCrossRefGoogle Scholar
  12. Foissner, W., 2006. Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozoologica 45: 111–136.Google Scholar
  13. Genitsaris, S., M. Moustaka-Gouni & K. A. Kormas, 2011. Airborne microeukaryote colonists in experimental water containers: diversity, succession, life histories and established food webs. Aquatic Microbial Ecology 62: 139–152.CrossRefGoogle Scholar
  14. Grillas, P., L. Rhazi & M. Rhazi, 2009. The vegetation of temporary pools: adaptation and opportunism. In: Fraga I Arguimbau P. (ed.). International Conference on Mediterranean Temporary Ponds. Consell Insular de Menorca. Recerca 14. Maó: 111–129.Google Scholar
  15. Gross, E., S. Hilt, P. Lombardo & G. Mulderij, 2007. Searching for allelopathic effects of submerged macrophytes on phytoplankton – state of the art and open questions. Hydrobiologia 584: 77–88.CrossRefGoogle Scholar
  16. Hammer, O., D. A. T. Harper & P. D. Ryan, 2001. Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 4–9.Google Scholar
  17. Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  18. Krasznai, E., G. Borics, G. Várbíró, A. Abonyi, J. Padisák, C. Deák & B. Tóthmérész, 2010. Characteristics of the pelagic phytoplankton in shallow oxbows. Hydrobiologia 639: 173–184.CrossRefGoogle Scholar
  19. Kruskal, J. B. & M. Wish, 1978. Multidimensional Scaling. Sage Publications, London: 96 pp.Google Scholar
  20. Marrone, F. & L. Naselli-Flores, 2011. Primo reperto di una lenticchia d’acqua alloctona in Sicilia: Lemna minuta Kunth (Araceae, Lemnoideae). Il Naturalista Siciliano 35: 179–185.Google Scholar
  21. Marrone, F., R. Barone & L. Naselli-Flores, 2006. Ecological characterization and cladocerans, calanoid copepods and large branchiopods of temporary ponds in a Mediterranean island (Sicily, southern Italy). Chemistry and Ecology 22(Suppl. 1): 181–190.CrossRefGoogle Scholar
  22. McGill, B. J. & J. S. Brown, 2007. Evolutionary game theory and adaptive dynamics of continuous traits. Annual Review of Ecology Evolution and Systematics 38: 403–435.CrossRefGoogle Scholar
  23. Moyá, G. & V. Conforti, 2009. Cyanobacteria and microalgae communities in temporary ponds. In: Fraga i Arguimbau, P. (ed.). International Conference on Mediterranean Temporary Ponds. Proceedings & Abstracts. Consell Insular de Menorca. Recerca, 14. Maó, Menorca: 95–106.Google Scholar
  24. Mozley, A., 1944. Temporary ponds, neglected natural resource. Nature 154: 490.CrossRefGoogle Scholar
  25. Myerson, R. B., 1997. Game Theory: Analysis of Conflict. Harvard University Press, Cambridge: 600 pp.Google Scholar
  26. Naselli-Flores, L., 2003. Man-made lakes in Mediterranean semi-arid climate: the strange case of Dr Deep Lake and Mr Shallow Lake. Hydrobiologia 506–509: 13–21.CrossRefGoogle Scholar
  27. Naselli-Flores, L. & R. Barone, 1994. Relationship between trophic state and plankton community structure in 21 Sicilian dam reservoirs. Hydrobiologia 275(276): 197–205.CrossRefGoogle Scholar
  28. Naselli-Flores, L. & R. Barone, 2002. Limnology of a small, temporary pond: the Pond of Santa Rosalia (Sicily, Italy). Verhandlungen des Internationalen Verein Limnologie 28: 1673–1677.Google Scholar
  29. Naselli-Flores, L. & R. Barone, 2005. Water-level fluctuations in Mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia 548: 85–99.CrossRefGoogle Scholar
  30. Naselli-Flores, L. & G. Rossetti, 2010. Santa Rosalia, the icon of biodiversity. Hydrobiologia 653: 235–243.CrossRefGoogle Scholar
  31. Naselli-Flores, L., R. Barone, I. Chorus & R. Kurmayer, 2007. Toxic cyanobaterial blooms in reservoirs under a semiarid Mediterranean climate: the magnification of a problem. Environmental Toxicology 22: 399–404.PubMedCrossRefGoogle Scholar
  32. Oertli, B., J. Biggs, R. Céréghino, P. Grillas, P. Joly & J.-B.- Lachavanne, 2005. Conservation and monitoring of pond biodiversity: introduction. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 535–540.CrossRefGoogle Scholar
  33. Oertli, B., R. Céréghino, J. Biggs, S. Declerck, A. Hull & M. R. Miracle (eds), 2010. Pond Conservation in Europe. Developments in Hydrobiology 210. Springer, Dordrecht: 386 pp.Google Scholar
  34. Padisák, J., 1992. Seasonal succession of phytoplankton in a large shallow lake (Balaton, Hungary) – a dynamic approach to ecological memory, its possible role and mechanisms. Journal of Ecology 80: 217–230.CrossRefGoogle Scholar
  35. Padisák, J., L. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.CrossRefGoogle Scholar
  36. Padisák, J., É. Hajnal, L. Krienitz, J. Lakner & V. Üveges, 2010. Rarity, ecological memory, rate of floral change in phytoplankton – and the mystery of the red cock. Hydrobiologia 653: 45–64.CrossRefGoogle Scholar
  37. Podani, J., 2000. Introduction to the exploration of multivariate biological data. Backhuys, Leiden: 407 pp.Google Scholar
  38. Reynolds, C. S., V. L. Huszar, C. Kruk, L. Naselli Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  39. Ribeiro Rodrigues, L. H., E. Bertazzo Canterle, V. Becker, V. Gazulha, A. Hamester & D. da Motta Marques, 2011. Dynamics of plankton and fish in a subtropical temporary wetland: rice fields. Scientific Research and Essays 6: 2069–2077.Google Scholar
  40. Robarts, R. D., M. T. Arts & D. B. Donald, 1995. Phytoplankton primary production of three temporary northern prairie wetlands. Canadian Journal of Fisheries and Aquatic Sciences 52: 897–902.CrossRefGoogle Scholar
  41. Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman & Hall, London: 357 pp.Google Scholar
  42. Tartari, G. A. & R. Mosello, 1997. Metodologie analitiche e controlli di qualità nel laboratorio chimico dell’Istituto Italiano di Idrobiologia. Documenta dell’Istituto Italiano di Idrobiologia 60: 1–160.Google Scholar
  43. Van Donk, E. & W. J. Van de Bund, 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy vs other mechanisms. Aquatic Botany 72: 261–274.CrossRefGoogle Scholar
  44. Wilbur, H. M., 1997. Experimental ecology of food webs: complex systems in temporary ponds. Ecology 78: 2279–2302.CrossRefGoogle Scholar
  45. Williams, D. D., 2006. The Biology of temporary waters. Oxford University Press, Oxford: 337 pp.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Environmental Biology and Biodiversity, Section of BotanyUniversity of PalermoPalermoItaly

Personalised recommendations