Advertisement

Hydrobiologia

, Volume 692, Issue 1, pp 57–66 | Cite as

Fluctuating water table affects gross ecosystem production and gross radiation use efficiency in a sedge-grass marsh

  • J. Dušek
  • H. Čížková
  • S. Stellner
  • R. Czerný
  • J. Květ
WETLAND SERVICES AND MANAGEMENT

Abstract

The eddy covariance method was used for continuous measurement of the seasonal courses of the following parameters of the carbon cycle in a sedge-grass marsh type of wetland ecosystem (49°01′29″N, 14°46′13″E, South Bohemia, Czech Republic, Central Europe): gross ecosystem production (GEP), net ecosystem production (NEP) and ecosystem respiration. During a 3-year series of measurements, we recorded marked fluctuations of the water table, which affected the overall water regime of the wetland studied. Between-year differences in the water regime strongly influenced the total annual carbon sequestration. The lowest annual GEP and NEP of 996 and 152 g m−2 of carbon, respectively, were recorded in 2006, a year with two large floods, one in the spring, the other in the summer. By contrast, in the dry year of 2007, with no flood, the highest annual GEP and NEP were recorded: 1,328 and 274 g m−2, respectively. Significant differences were found in the efficiency of solar energy use for GEP [gross radiation use efficiency, GRUE = GEP/PhAR (photosynthetically active radiation), i.e., amount of carbon gained per energy unit]. The highest GRUE was recorded immediately after the 2006 summer flood. In 2007, the GRUE decreased linearly with rising water table. A variable water regime thus markedly affects the processes of carbon accumulation and the efficiency of solar energy use for organic matter production in freshwater wetlands of the sedge-grass marsh type.

Keywords

Wetland Fen Carbon Water level Carex acuta L. Eddy covariance 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support to their research provided by the projects SP/2d1/93/07 of the Ministry of the Environment of the Czech Republic (Czech Terra), OC08021 (COST 639) of the Ministry of Education, Youth and Sports and the project: CzechGlobe—Centre for Global Climate Change Impacts Studies, Reg. No. CZ.1.05/1.1.00/02.0073.

References

  1. Aubinet, M., A. Grelle, A. Ibrom, Ü. Rannik, J. Moncrieff, T. Foken, A. S. Kowalski, P. H. Martin, P. Berbigier, C. H. Bernhofer, R. Clement, J. Elbers, A. Granier, T. Grünwald, K. Morgenstern, K. Pilegaard, C. Rebmann, W. Snijders, R. Valentini & T. Vesala, 2000. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Advances in Ecological Research 30: 113–175.CrossRefGoogle Scholar
  2. Aurela, M., T. Laurila & T. P. Tuovinen, 2004. The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophysical Research Letters 31: L16119.CrossRefGoogle Scholar
  3. Baldocchi, D. D., 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Review. Global Change Biology 9: 479–492.CrossRefGoogle Scholar
  4. Bernard, J. M. & K. Fiala, 1986. Distribution and standing crop of living and dead roots in three wetland Carex species. Bulletin of the Torrey Botanical Club 113: 1–5.CrossRefGoogle Scholar
  5. Bohn, T. J., D. P. Lettenmaier, K. Sathulur, L. C. Bowling, E. Podest, K. C. McDonald & T. Friborg, 2007. Methane emissions from western Siberian wetlands: heterogeneity and sensitivity to climate change. Environmental Research Letters 2: 1–9.CrossRefGoogle Scholar
  6. Christensen, T. R., A. Ekberg, L. Ström, M. Mastepanov, N. S. Panikov, M. Öquist, B. H. Svensson, H. Nykänen, P. J. Martikainen & H. Oskarsson, 2003. Factors controlling large-scale variations in methane emissions from wetlands. Geophysical Research Letters 30: 1414.CrossRefGoogle Scholar
  7. Crawford, R. M. M., 1989. The anaerobic retreat. In Crawford, R. M. M. (ed.), Studies in Plant Survival. Ecological Case Histories of Plant Adaptation to Adversity. Blackwell, Oxford.Google Scholar
  8. Dušek, J., 2002. Seasonal dynamics of nonstructural saccharides in a rhizomatous grass Calamagrostis epigeios. Biologia Plantarum 45: 383–387.CrossRefGoogle Scholar
  9. Dušek, J., H. Čížková, R. Czerný, K. Taufarová, M. Šmídová & D. Janouš, 2009. Influence of summer flood on the net ecosystem exchange of CO2 in a temperate sedge-grass marsh. Agricultural and Forest Meteorology 149: 1524–1530.CrossRefGoogle Scholar
  10. Garbulsky, M. F., J. Peñuelas, D. Papale, J. Ardö, M. L. Goulden, G. Kiely, A. D. Richardson, E. Rotenberg, E. M. Veenendaal & I. Filella, 2010. Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems. Global Ecology and Biogeography 19: 253–267.CrossRefGoogle Scholar
  11. Gorham, E., 1991. Northern peatlands: role in the carbon cycle and probable responses to climate warming. Ecology Applications 1: 182–195.CrossRefGoogle Scholar
  12. Hofierka, J. & M. Suri, 2002. The solar radiation model for Open source GIS: implementation and applications. In International GRASS Users Conference in Trento, Italy, September 2002: 1–19.Google Scholar
  13. Holubičková, B., 1959. Příspěvek ke studiu rašeliništní vegetace. I. Mokré louky u Třeboně (A contribution to the study of moorland vegetation. I. Mokré louky near Třeboň). Sborník Vysoké Školy Zemědělské v Praze: 257–285 (in Czech).Google Scholar
  14. Jeník, J. & J. Květ (eds), 1983. Studie zaplavovaných ekosystémů u Třeboně (Ecological study of inundated ecosystems near Třeboň, South Bohemia, Czechoslovakia). Studie ČSAV 1983/4, Academia, Praha (in Czech with Engl. sum.).Google Scholar
  15. Kovářová, M., 2004. Global climatic changes in Třeboň Basin Biosphere Reserve. In Czech Statistical Association, Robust 2004: 17–224 (in Czech).Google Scholar
  16. Kremenetski, K. V., A. A. Velichko, O. K. Borisova, G. M. MacDonald, L. C. Smith, K. E. Frey & L. A. Orlova, 2003. Peatlands of the Western Siberian lowlands: current knowledge on zonation, carbon content and Late Quaternary history. Quaternary Science Reviews 22: 703–723.CrossRefGoogle Scholar
  17. Květ, J., J. Jeník, & L. Soukupová, 2002. Freshwater Wetlands and Their Sustainable Future. A Case Study of the Třeboň Basin Biosphere Reserve, Czech Republic. UNESCO, Paris and Parthenon, Boca Raton.Google Scholar
  18. LeMer, J. & P. Roger, 2001. Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology 37: 25–50.CrossRefGoogle Scholar
  19. Lloyd, J. & J. A. Taylor, 1994. On the temperature dependence of soil respiration. Functional Ecology 8: 315–323.CrossRefGoogle Scholar
  20. Mitsch, J. W., J. G. Gosselink, C. J. Anderson & L. Zhang, 2009. Wetland Ecosystems. Wiley Hoboken, NJ.Google Scholar
  21. Monteith, J. L., 1972. Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology 9: 747–766.CrossRefGoogle Scholar
  22. Moog, P. R., 1998. Flooding tolerance of Carex species. I. Root structure. Planta 207: 189–198.CrossRefGoogle Scholar
  23. Moog, P. R. & W. Brüggemann, 1998. Flooding tolerance of Carex species. II. Root gas-exchange capacity. Planta 207: 199–206.CrossRefGoogle Scholar
  24. Prach, K., 1993. Vegetational changes in a wet meadow complex, South-Bohemia, Czech Republic. Folia Geobotanica & Phytotaxonomica 28: 1–13.Google Scholar
  25. Prach, K., 2008. Vegetation changes in a wet meadow complex during the past half-century. Folia Geobotanica 43: 119–130.CrossRefGoogle Scholar
  26. Prach, K. & L. Soukupová, 2002. Alterations in the Wet Meadows vegetation pattern. In Květ, J., J. Jeník & L. Soukupová (eds), Freshwater Wetlands and Their Sustainable Future. A Case Study of the Třeboň Basin Biosphere Reserve, Czech Republic. UNESCO, Paris and Parthenon, Boca Raton: 243–254.Google Scholar
  27. Přibáň, K., J. Jeník, J. P. Ondok, & P. Popela, 1992. Analysis and modeling of wetland microclimate. The case study Třeboň Biosphere Reserve. Studie ČSAV 1992/2, ed. Academia, Praha: 1–168.Google Scholar
  28. Schedlbauer, J. L., S. F. Oberbauer, G. Starr & K. L. Jimenez, 2010. Seasonal differences in the CO2 exchange of a short-hydroperiod Florida Everglades marsh. Agricultural and Forest Meteorology 150: 994–1006.CrossRefGoogle Scholar
  29. Schwalm, C. R., T. A. Black, B. D. Amiro, M. A. Arain, A. G. Barr, C. P.-A. Bourque, A. L. Dunn, L. B. Flanagan, M.-A. Giasson, P. M. Lafleur, H. A. Margolis, J. H. McCaughey, A. L. Orchansky & S. C. Wofsy, 2006. Photosynthetic light use efficiency of three biomes across an east-west continental-scale transect in Canada. Agricultural and Forest Meteorology 140: 269–286.CrossRefGoogle Scholar
  30. Soukupová, L., 1988. Short life-cycles in two wetland sedges. Aquatic Botany 30: 49–62.CrossRefGoogle Scholar
  31. Soukupová, L., 1994. Allocation plasticity and modular structure in clonal graminoids in response to waterlogging. Folia Geobotanica & Phytotaxonomica 29: 227–236.CrossRefGoogle Scholar
  32. Walter, H. & H. Leith, 1960. Klimadiagramm-Weltatlas. Gustav Fischer, Jena, Germany.Google Scholar
  33. Wigley, T. M. L. & D. S. Schimel, 2000. The Carbon Cycle. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  34. Zar, J. H., 1998. Biostatistical Analysis. Prentice Hall, New Jersey.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • J. Dušek
    • 1
  • H. Čížková
    • 1
  • S. Stellner
    • 1
  • R. Czerný
    • 1
  • J. Květ
    • 1
  1. 1.Global Change Research Centre AS CR, v.v.i.České BudějoviceCzech Republic

Personalised recommendations