, Volume 686, Issue 1, pp 29–40 | Cite as

Lack of lake augmentation effects on aquatic macrophyte abundance and distribution in west-central Florida lakes, USA

  • Mark V. Hoyer
  • Daniel E. CanfieldJr.
  • Michael D. Netherland
  • Douglas A. Leeper
Primary Research Paper


This study tested the hypothesis that lake augmentation with well water impacts the distribution and abundance of aquatic plants in lakes. Water chemistry was measured from 14 wells, 14 augmented lakes, and 14 lakes without augmentation. Nine in-lake aquatic macrophyte abundance and species distribution metrics were measured in all lakes. Net photosynthetic rate (NPR) of nine submersed species was also measured in well and lake water. Augmentation increased alkalinity in receiving lakes, but total phosphorus was significantly lower, which resulted in lower chlorophyll and greater Secchi depths. Although measured NPR was higher for all plants incubated in well water, only one (emergent species richness) in-lake aquatic macrophyte metric was different in lakes with and without augmentation. Lake augmentation significantly changed water chemistry of receiving waters, but effects on aquatic macrophytes were minimal, suggesting that other environmental factors are limiting the distribution and abundance of macrophytes in the study lakes. The lower phosphorus levels in augmented lakes were unexpected because phosphorus concentrations in well water were significantly greater than in lakes with or without augmentation. Precipitation of calcium phosphate likely accounts for the reduced phosphorus levels in augmented lakes.


Minimum lake levels Net photosynthesis Total alkalinity Total phosphorus Phosphorus precipitation 



We thank the Southwest Florida Water Management District for supporting this research. We thank all of the Florida LAKEWATCH volunteers who help collecting the data used in support of this project and other stake-holder who granted access to lakes and wells for sampling purposes.


  1. Bachmann, R. W., M. V. Hoyer & D. E. Canfield Jr., 2001. Evaluation of recent limnological changes at lake Apopka. Hydrobiologia 448: 19–26.CrossRefGoogle Scholar
  2. Bachmann, R. W., C. A. Horsburgh, M. V. Hoyer, L. K. Mataraza & D. E. Canfield Jr., 2002. Relations between trophic state indicators and plant biomass in Florida Lakes. Hydrobiologia 470: 219–234.CrossRefGoogle Scholar
  3. Bachmann, R. W., M. V. Hoyer & D. E. Canfield Jr., 2003. An alternative to proposed phosphorus TMDLs for management of Lake Okeechobee. Lake and Reservoir Management 19: 251–264.CrossRefGoogle Scholar
  4. Beal, E. O., 1977. A Manual of Marsh and Aquatic Vascular Plants of North Carolina with Habitat Data. Technical Bulletin No. 247. North Carolina Agricultural Research Service, Raleigh.Google Scholar
  5. Belanger, T. V. & R. A. Kirkner, 1994. Groundwater/surface water interaction in a Florida augmentation lake. Lake and Reservoir Management 8: 165–174.CrossRefGoogle Scholar
  6. Brenner, M. & T. J. Whitmore, 1999. Paleolimnological Reconstruction of Water Quality for Lakes Dosson, Halfmoon and Round in Hillsborough County, Florida. Final Report to the Southwest Florida Water Management District, Brooksville, FL.Google Scholar
  7. Brenner, M., J. M. Smoak, M. S. Allen, C. L. Schelske & D. A. Leeper, 2000. Biological accumulation of 226Ra in a groundwater-augmented Florida lake. Limnology and Oceanography 45: 710–715.CrossRefGoogle Scholar
  8. Brooks, H. K., 1981. Geologic Map of Florida. Scale 1:500,000. Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL.Google Scholar
  9. Brown, C. D., M. V. Hoyer, R. W. Bachmann & D. E. Canfield Jr., 2000. Nutrient-chlorophyll relationships: an evaluation of empirical nutrient-chlorophyll models using Florida and northern temperate lake data. Canadian Journal of Fisheries and Aquatic Sciences 57: 1574–1583.CrossRefGoogle Scholar
  10. Bultemeier, B. W., M. D. Netherland, J. A. Ferrell & W. T. Haller, 2009. Differential herbicide response among three phenotypes of Cabomba caroliniana. Invasive Plant Science and Management 2: 352–359.CrossRefGoogle Scholar
  11. Caffrey, A. J., M. V. Hoyer & D. E. Canfield Jr, 2007. Factors affecting the maximum depth of colonization by submersed macrophytes in Florida lakes. Lake and Reservoir Management 23: 287–297.CrossRefGoogle Scholar
  12. Canfield, D. E. Jr., 1983. Prediction of chlorophyll a concentrations in Florida lakes: the importance of phosphorus and nitrogen. Water Resources Bulletin 19: 255–262.CrossRefGoogle Scholar
  13. Canfield, D. E. Jr. & L. M. Hodgson, 1983. Prediction of Secchi disk depths in Florida lakes: impact of algal biomass and color. Hydrobiologia 99: 51–60.CrossRefGoogle Scholar
  14. Canfield, D. E. Jr. & M. V. Hoyer, 1990. A Characterization of Fish Populations in Two Central Florida Lakes. Final report to the Florida Turfgrass Association, Gainesville, FL.Google Scholar
  15. Canfield, D. E. Jr., K. A. Langeland, S. B. Linda & W. T. Haller, 1985. Relations between water transparency and maximum depth of macrophyte colonization in lakes. Journal of Aquatic Plant Management 23: 25–28.Google Scholar
  16. Canfield, D. E. Jr., C. D. Brown, R. W. Bachmann & M. V. Hoyer, 2002. Volunteer lake monitoring: testing the reliability of data collected by the Florida LAKEWATCH program. Lake and Reservoir Management 18: 1–9.CrossRefGoogle Scholar
  17. Carr, G. M., H. C. Duthie & W. D. Taylor, 1997. Models of aquatic plant productivity: a review of the factors that influence growth. Aquatic Botany 59: 195–215.CrossRefGoogle Scholar
  18. Chambers, P. A. & J. Kalff, 1985. Depth distribution and biomass of submersed aquatic macrophyte communities in relation to Secchi depth. Canadian Journal of Fisheries and Aquatic Sciences 42: 701–709.CrossRefGoogle Scholar
  19. Chapin, F. S. III, A. J. Bloom, C. B. Field & R. H. Waring, 1987. Plant response to multiple environmental factors. BioScience 37: 49–57.CrossRefGoogle Scholar
  20. Cooney, P. B. & M. S. Allen, 2006. Effects of introduced groundwater on water chemistry and fish assemblages in central Florida lakes. Hydrobiologia 556: 279–294.CrossRefGoogle Scholar
  21. DeArmond, B. S., M. Brenner, W. F. Kenney, D. A. Leeper, J. M. Smoak, J. H. Curtis, B. C. Shumate & D. G. Buck, 2006. Radium-226 accumulation in sediments of a groundwater-augmented lake near Tamp, Florida, USA. Verhandlungen der Internationalen Vereinigung für Theortische und Angewandte Limnologie 29: 1275–1279.Google Scholar
  22. Dooris, P. M., 1978. Hydrilla verticillata: chemical factors in lakes affecting growth. Ph.D. Dissertation. University of South Florida, Tampa.Google Scholar
  23. Dooris, P. M. & D. F. Martin, 1979. Ground-water induced changes in lake chemistry. Ground Water 17: 324–327.Google Scholar
  24. Dooris, P. M. & R. J. Moresi, 1975. Evaluation of Lake Augmentation Practices in Northwest Hillsborough County, Florida. Technical Report. Southwest Florida Water Management District, Brooksville.Google Scholar
  25. Dooris, P. M., G. M. Dooris & D. F. Martin, 1982. Phytoplankton responses to ground water addition in Central Florida lakes. Water Resources Bulletin 18: 335–337.CrossRefGoogle Scholar
  26. Duarte, C. M. & J. Kalff, 1986. Littoral slope as a predictor of the maximum biomass of submerged macrophyte communities. Limnology and Oceanography 31: 1072–1080.CrossRefGoogle Scholar
  27. Effler, S. W., S. M. O’Donnell, A. R. Prestigiacomo, D. M. O’Donnell, R. K. Gelda & D. A. Mathews, 2010. The effect of municipal wastewater effluent on nitrogen levels in Onondaga Lake, a 36-year record. Water Environment Research 82: 3–19.PubMedCrossRefGoogle Scholar
  28. Eusuff, M. M. & K. E. Lansey, 2004. Optimal operation of artificial groundwater recharge systems considering water quality transformations. Water Resources Management 18: 379–405.CrossRefGoogle Scholar
  29. Griffith, G., D. E. Canfield, Jr., C. A. Horsburgh & J. M. Omernick, 1997. Lake Regions of Florida. Report to the Florida Department of Environmental Protection, U. S. Environmental Protection Agency, Corvallis, OR.Google Scholar
  30. Hawker, D. W., J. L. Cumming, P. A. Neale & M. E. Bartkow, 2011. A screening level fate of organic contamination from advanced water treatment in a potable water supply reservoir. Water Research 45: 768–780.PubMedCrossRefGoogle Scholar
  31. Hoyer, M. V., 2009. Calculations for successful planning: measuring bathymetry and aquatic plant abundance for planning shoreline management. LakeLine 29: 37–40.Google Scholar
  32. Hoyer, M. V., D. E. Canfield Jr., C. A. Horsburgh & K. Brown, 1996. Florida Freshwater plants a handbook of common aquatic plants in Florida lakes. SP 189. University of Florida/Institute of Food and Agricultural Sciences, Gainesville, FL.Google Scholar
  33. Hoyer, M. V., C. A. Horsburgh, D. E. Canfield Jr. & R. W. Bachmann, 2005. Lake level and trophic state variables among a population of shallow Florida lakes and within individual lakes. Canadian Journal of Fisheries and Aquatic Sciences 62: 1–10.CrossRefGoogle Scholar
  34. Huertas, E., M. Folch, M. Salgot, I. Gonzalvo & C. Passarell, 2006. Constructed wetland effluent for streamflow augmentation in the Besos River (Spain). Desalination 188: 141–147.CrossRefGoogle Scholar
  35. Hutchinson, G. E., 1975. A Treatise of Limnology. Vol. 3. Limnological Botany. John Wiley and Son, Inc, New York.Google Scholar
  36. James, R. T., B. L. Jones & V. H. Smith, 1995a. Historical trends in the Lake Okeechobee ecosystem. II. Nutrient budgets. Archiv für Hydrobiologie Supplement 107: 25–47.Google Scholar
  37. James, R. T., V. H. Smith & B. L. Jones, 1995b. Historical trends in the Lake Okeechobee ecosystem. III. Water quality. Archiv für Hydrobiologie Supplement 107: 49–69.Google Scholar
  38. Janus, L. L., D. M. Soballe & B. L. Jones, 1990. Nutrient budget analyses and phosphorus loading goal for Lake Okeechobee, Florida. Verhandlungen der Internationalen Vereinigung für Theortische unde Angewandte Limnologie 24: 538–546.Google Scholar
  39. Jupp, B. P. & D. H. N. Spence, 1977. Limitations on macrophytes in a eutrophic lake, Loch Leven. Journal of Ecology 65: 175–186.CrossRefGoogle Scholar
  40. Kerr, G. N., B. M. Sharp & P. White, 2003. The economics of augmenting Chritchurch’s water supply. Journal of Hydrology 42: 113–124.Google Scholar
  41. Maceina, M. J. & J. V. Shireman, 1980. The use of a recording fathometer for determination of distribution and biomass of hydrilla. Journal Aquatic Plant Management 18: 34–39.Google Scholar
  42. Martin, D. F., D. M. Victor & P. M. Dooris, 1976a. Effects of artificially introduced ground water on the chemical and biochemical characteristics of six Hillsborough County (Florida) lakes. Water Research 10: 65–69.CrossRefGoogle Scholar
  43. Martin, D. F., D. M. Victor & P. M. Dooris, 1976b. Implications of lake augmentation on growth of Hydrilla. Environmental Science and Engineering 11: 245–253.Google Scholar
  44. McFarlane, D. J., A. Smith, E. Bekele, J. Simpson & S. Tapsuwan, 2009. Using treated wastewater to save wetlands impacted by climate change and pumping. Water Science and Technology 59: 213–221.PubMedCrossRefGoogle Scholar
  45. Moyle, J. B., 1945. Some chemical factors influencing the distribution of aquatic plants in Minnesota. American Midland Naturalist 34: 402–420.CrossRefGoogle Scholar
  46. Netherland, M. D. & K. D. Getsinger, 1995a. Laboratory evaluation of threshold fluridone concentrations for controlling hydrilla and Eurasian watermilfoil. Journal of Aquatic Plant Management 33: 33–36.Google Scholar
  47. Netherland, M. D. & K. D. Getsinger, 1995b. Potential control of hydrilla and Eurasian watermilfoil under various fluridone half-life scenarios. Journal of Aquatic Plant Management 33: 36–42.Google Scholar
  48. Netherland, M. D. & C. A. Lembi, 1992. Gibberellin synthesis inhibitor effects on submersed aquatic weed species. Weed Science 40: 29–36.Google Scholar
  49. SAS, 2000. JMP Statistics and Graphics Guide. SAS Institute, Inc, Cary, NC, USA.Google Scholar
  50. Sokal, R. R. & F. J. Rohlf, 1981. The Principles and Practices of Statistics in Biological Research, 2nd ed. W. H. Freeman and Co., San Francisco, CA.Google Scholar
  51. Stanford, J. A. & F. R. Hauer, 1992. Mitigating the impacts of stream and lake regulation in the Flathead River catchment, Montana, USA – an ecosystem perspective. Aquatic Conservation – Marine and Freshwater 2: 35–63.CrossRefGoogle Scholar
  52. Stauffer, R. E. & D. E. Canfield Jr., 1992. Hydrology and alkalinity regulation of soft Florida waters: an integrated assessment. Water Resources Research 28: 1631–1648.CrossRefGoogle Scholar
  53. Stewart, J. W. & G. H. Hughes, 1974. Hydrologic Consequences of Using Ground Water to Maintain Lake Levels Affected by Water Wells Near Tampa, Florida. Investigation Report Number 74, Florida Department of Natural Resources, Bureau of Geology, Tallahassee.Google Scholar
  54. Vicente, I., K. Cattaneo, Cruz-Pizarro, A. Brauer & P. Guilizzoni, 2006. Sedimentary phosphate fractions related to calcite precipitation in a eutrophic hardwater lake (Lake Alserio, northern Italy). Journal of Paleolimnology 35: 55–64.CrossRefGoogle Scholar
  55. Weisner, S. E. B., J. A. Strand & H. Sandsten, 1997. Mechanisms regulating abundance of submerged vegetation in shallow eutrophic lakes. Oecologia 109: 592–599.CrossRefGoogle Scholar
  56. Wetzel, R. W., 1975. Limnology. W. B. Saunders Company, Philadelphia.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Mark V. Hoyer
    • 1
  • Daniel E. CanfieldJr.
    • 1
  • Michael D. Netherland
    • 2
  • Douglas A. Leeper
    • 3
  1. 1.Fisheries and Aquatic Sciences, School of Forest Resources and ConservationUniversity of Florida/IFASGainesvilleUSA
  2. 2.USACE ERDC Environmental-LaboratoryCenter for Aquatic and Invasive PlantsGainesvilleUSA
  3. 3.Resource Projects DepartmentSouthwest Florida Water Management DistrictBrooksvilleUSA

Personalised recommendations