Skip to main content
Log in

A community-based framework for aquatic ecosystem models

  • Opinion Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Here, we communicate a point of departure in the development of aquatic ecosystem models, namely a new community-based framework, which supports an enhanced and transparent union between the collective expertise that exists in the communities of traditional ecologists and model developers. Through a literature survey, we document the growing importance of numerical aquatic ecosystem models while also noting the difficulties, up until now, of the aquatic scientific community to make significant advances in these models during the past two decades. Through a common forum for aquatic ecosystem modellers we aim to (i) advance collaboration within the aquatic ecosystem modelling community, (ii) enable increased use of models for research, policy and ecosystem-based management, (iii) facilitate a collective framework using common (standardised) code to ensure that model development is incremental, (iv) increase the transparency of model structure, assumptions and techniques, (v) achieve a greater understanding of aquatic ecosystem functioning, (vi) increase the reliability of predictions by aquatic ecosystem models, (vii) stimulate model inter-comparisons including differing model approaches, and (viii) avoid ‘re-inventing the wheel’, thus accelerating improvements to aquatic ecosystem models. We intend to achieve this as a community that fosters interactions amongst ecologists and model developers. Further, we outline scientific topics recently articulated by the scientific community, which lend themselves well to being addressed by integrative modelling approaches and serve to motivate the progress and implementation of an open source model framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arhonditsis, G. B., M. Winder, M. T. Brett & D. E. Schindler, 2004. Patterns and mechanisms of phytoplankton variability in Lake Washington (USA). Water Research 38: 4013–4027.

    Article  PubMed  CAS  Google Scholar 

  • Burger, D. F., D. P. Hamilton & C. A. Pilditch, 2008. Modelling the relative importance of internal and external nutrient loads on water column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake. Ecological Modelling 211: 411–423.

    Article  Google Scholar 

  • Chan, W. S., F. Recknagel, H. Cao & H. D. Park, 2007. Elucidation and short-term forecasting of microcystin concentrations in Lake Suwa (Japan) by means of artificial neural networks and evolutionary algorithms. Water Research 41: 2247–2255.

    Article  PubMed  CAS  Google Scholar 

  • De Stasio, B. T., D. K. Hill, J. M. Kleinhans, N. P. Nibbelink & J. J. Magnuson, 1996. Potential effects of global climate change on small north-temperate lakes: physics, fish, and plankton. Limnology and Oceanography 41: 1136–1149.

    Article  Google Scholar 

  • Elliott, J., 2010. The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Global Change Biology 16: 864–876.

    Article  Google Scholar 

  • Elliott, J. A. & L. May, 2008. The sensitivity of phytoplankton in Loch Leven (UK) to changes in nutrient load and water temperature. Freshwater Biology 53: 32–41.

    CAS  Google Scholar 

  • Frigg, R. & S. Hartmann, 2006. Models in science. In The Stanford Encyclopedia of Philosophy, Spring 2006 Edition.

  • Grimm, V., E. Revilla, U. Berger, F. Jeltsch, W. M. Mooij, S. F. Railsback, H. H. Thulke, J. Weiner, T. Wiegand & D. L. DeAngelis, 2005. Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science 310: 987–991.

    Article  PubMed  Google Scholar 

  • Hambright, K. D., M. Gophen & S. Serruya, 1994. Influence of long-term climatic changes on the stratification of a subtropical, warm monomictic lake. Limnology and Oceanography 39: 1233–1242.

    Article  Google Scholar 

  • Hambright, K. D., W. Eckert, P. R. Leavitt & C. L. Schelske, 2004. Effects of historical lake level and land use on sediment and phosphorus accumulation rates in Lake Kinneret. Environmental Science and Technology 38: 6460–6467.

    Article  CAS  Google Scholar 

  • Hamilton, D. P., 1999. Numerical modelling and lake management: applications of the DYRESM model. In Tundisi, J. G. & M. Straskraba (eds), Theoretical Reservoir Ecology and Its Applications. Backhuys Publishers, The Netherlands: 153–174.

    Google Scholar 

  • Hipsey, M. R., J. P. Antenucci & J. D. Brookes, 2008. A generic, process-based model of microbial pollution in aquatic systems. Water Resources Research 44: W07408.

    Article  Google Scholar 

  • Jørgensen, S. E., 1995. State of the art of ecological modelling in limnology. Ecological Modelling 78: 101–115.

    Article  Google Scholar 

  • Makler-Pick, V., G. Gal, J. Shapiro & M. R. Hipsey, 2011. Exploring the role of fish in a lake ecosystem (Lake Kinneret, Israel) by coupling an individual-based fish population model to a dynamic ecosystem model. Canadian Journal of Fisheries and Aquatic Sciences 68: 1265–1284.

    Google Scholar 

  • Mooij, W. M., J. H. Janse, L. N. De Senerpont Domis, S. Hülsmann & B. W. Ibelings, 2007. Predicting the effect of climate change on temperate shallow lakes with the ecosystem model PCLake. Hydrobiologia 584: 443–454.

    Article  CAS  Google Scholar 

  • Mooij, W. M., D. Trolle, E. Jeppesen, G. Arhonditsis, P. V. Belolipetsky, D. B. R. Chitamwebwa, A. G. Degermendzhy, D. L. De Angelis, L. N. De Senerpont Domis, A. S. Downing, J. A. Elliott, C. R. Fragoso Jr, U. Gaedke, S. N. Genova, R. D. Gulati, L. Håkanson, D. P. Hamilton, M. R. Hipsey, J. Hoen, S. Hülsmann, F. H. Los, V. Makler-Pick, T. Petzoldt, I. G. Prokopkin, K. Rinke, S. A. Schep, K. Tominaga, A. A. Van Dam, E. H. Van Nes, S. A. Wells & J. H. Janse, 2010. Challenges and opportunities for integrating lake ecosystem modelling approaches. Aquatic Ecology 44: 633–667.

    Article  Google Scholar 

  • Pennell, C. & T. Reichler, 2011. On the effective number of climate models. Journal of Climate 24: 2358–2367.

    Article  Google Scholar 

  • Randall, D. A., R. A. Wood, S. Bony, R. Colman, T. Fichefet, J. Fyfe, V. Kattsov, A. Pitman, J. Shukla, J. Srinivasan, R. J. Stouffer, A. Sumi & K. E. Taylor, 2007. Climate models and their evaluation. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

  • Rigler, F. H. & R. H. Peters, 1995. Science and Limnology. Ecology Institute, Oldendurf/Luhe: 239 pp.

  • Robson, B. J. & D. P. Hamilton, 2004. Three-dimensional modelling of a Microcystis bloom event in the Swan River estuary, Western Australia. Ecological Modelling 174: 203–222.

    Article  CAS  Google Scholar 

  • Schmolke, A., P. Thorbek, D. L. DeAngelis & V. Grimm, 2010. Ecological models supporting environmental decision making: a strategy for the future. Trends in Ecology & Evolution 25: 479–486.

    Article  Google Scholar 

  • Spillman, C. M., D. P. Hamilton & J. Imberger, 2009. Management strategies to optimise sustainable clam (Tapes philippinarum) harvests in Barbamarco Lagoon, Italy. Estuarine, Coastal and Shelf Science 81: 267–278.

    Article  Google Scholar 

  • Trolle, D., H. Skovgaard & E. Jeppesen, 2008. The Water Framework Directive: Setting the phosphorus loading target for a deep lake in Denmark using the 1D lake ecosystem model DYRESM-CAEDYM. Ecological Modelling 219: 138–152.

    Article  CAS  Google Scholar 

  • Trolle, D., D. P. Hamilton, C. A. Pilditch, I. C. Duggan & E. Jeppesen, 2011. Predicting the effects of climate change on trophic status of three morphologically varying lakes: Implications for lake restoration and management. Environmental Modelling and Software 26: 354–370.

    Article  Google Scholar 

  • van Ginkel, C., H. Cao, F. Recknagel & S. du Plessis, 2007. Forecasting of dinoflagellate blooms in warm-monomictic hypertrophic reservoirs in South Africa by means of rule-based agents. Water SA 33: 531–538.

    Google Scholar 

  • Wallace, B. B., M. C. Bailey & D. P. Hamilton, 2000. Simulation of vertical position of buoyancy regulating Microcystis aeruginosa in a shallow eutrophic lake. Aquatic Sciences 62(4): 320–333.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to CLEAR (a “Villum Kann Rasmussen Centre of Excellence Project on lake restoration”) for providing funding support for the workshop on Lake Ecosystem Modelling, Silkeborg, Denmark, 20–22 September 2010, and to GLEON (Global Lake Ecological Observatory Network), CRES (Centre for Regional Change in the Earth System) and REFRESH (a project on Adaptive Strategies to Mitigate the Impacts of Climate Change on European Freshwater Ecosystems, funded under the EU 7th Framework Programme), for additional funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Trolle.

Additional information

Handling editor: Boping Han

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trolle, D., Hamilton, D.P., Hipsey, M.R. et al. A community-based framework for aquatic ecosystem models. Hydrobiologia 683, 25–34 (2012). https://doi.org/10.1007/s10750-011-0957-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0957-0

Keywords

Navigation