, Volume 683, Issue 1, pp 163–172 | Cite as

Effects of Bythotrephes longimanus (Crustacea, Cladocera) on the abundance, morphology, and prey community of Leptodora kindtii (Crustacea, Cladocera)

  • Sophie E. Foster
  • W. Gary Sprules
  • Angela L. Strecker
Primary Research Paper


We hypothesized that native Leptodora kindtii would be shorter and have smaller feeding baskets in central Ontario lakes with greater abundances of small-bodied zooplankton prey, and that differences in zooplankton size among lakes could be attributed to the invasive cladoceran Bythotrephes longimanus. We evaluated these conjectures by comparing size metrics of Leptodora and the size of their preferred cladoceran prey in lakes invaded or not by Bythotrephes. Leptodora was less abundant in invaded lakes, but were smaller bodied with smaller feeding baskets only in lakes with long invasion histories. Small cladoceran abundance was greater in non-invaded lakes and was directly related to Leptodora abundance although not to Leptodora size. Mean Leptodora body size declined with increasing abundance of Bythotrephes. We evaluated three possible explanations for these patterns in Leptodora—(a) competition with Bythotrephes for zooplankton prey, (b) direct predation by Bythotrephes, and (c) size-selective predation by fish. While we were unable to unequivocally distinguish among these hypotheses, our observations are most consistent with predation by Bythotrephes changing zooplankton community composition and size structure in a manner that is detrimental to Leptodora. Our results indicate that Bythotrephes invasion may trigger more complex and subtle changes in food webs than previously thought.


Leptodora size Feeding basket size Bythotrephes invasion Cladoceran size Boreal lakes 



We thank K. Krupica and W. B. Wissemeyer for their help in the field and C. Tudorancea and J. Kilgour for counting and measuring zooplankton. N. Collins, B. Shuter, P. Abrams, D, Branstrator, and anonymous reviewers provided helpful comments and editorial corrections. Funding for this project was provided by a Natural Sciences and Engineering Research Council (NSERC) Discovery Grant to WGS, a Mary Beatty Scholarship from the University of Toronto Graduate School and other scholarships from the Department of Zoology to SEF, and a NSERC post-graduate scholarship to ALS. S. Arnott provided funding, logistical support, and advice to ALS. We are also grateful to the Ontario Ministry of Environment’s Dorset Environmental Science Center and the Ontario Ministry of Natural Resources Provincial Co-ordination Center for additional field support.


  1. Abrusán, G., 2003. Morphological variation of the predatory cladoceran Leptodora kindtii in relation to prey characteristics. Oecologia 134: 278–283.PubMedGoogle Scholar
  2. Barbiero, R. P. & M. L. Tuchman, 2004. Changes in the crustacean communities of Lakes Michigan, Huron, and Erie following the invasion of the predatory cladoceran Bythotrephes longimanus. Canadian Journal of Fisheries and Aquatic Sciences 61: 2111–2125.CrossRefGoogle Scholar
  3. Barnhisel, D. R. & W. C. Kerfoot, 2004. Fitting into food webs: behavioural and functional response of young lake trout (Salvelinus namaycush) to an introduced prey, the spiny cladoceran (Bythotrephes cederstroemi). Journal of Great Lakes Research 30(Supp. 1): 300–314.CrossRefGoogle Scholar
  4. Branstrator, D. K., 1995. Ecological interactions between Bythotrephes cederstroemi and Leptodora kindtii and the implications for species replacement in Lake Michigan. Journal of Great Lakes Research 21: 670–679.CrossRefGoogle Scholar
  5. Branstrator, D. K., 1998. Predicting diet composition from body length in the zooplankton predator Leptodora kindti. Limnology and Oceanography 43: 530–535.CrossRefGoogle Scholar
  6. Branstrator, D. K., 2005. Contrasting life histories of the predatory cladocerans Leptodora kindtii and Bythotrephes longimanus. Journal of Plankton Research 27: 569–585.CrossRefGoogle Scholar
  7. Bunnell, D. B, B. M. Davis, D. M. Warner, M. A. Chriscinske & E. F. Roseman, 2011. Planktivory in the changing Lake Huron zooplankton community: Bythotrephes consumption exceeds that of Mysis and fish. Freshwater Biology. doi: 10.1111/j.1365-2427.2010.02568.x
  8. Dadswell, M. J., 1974. Distribution, ecology, and postglacial dispersal of certain crustaceans and fishes in eastern North America. National Museum of Natural Sciences Publications in Zoology, No. 11, Ottawa.Google Scholar
  9. Foster, S. E., 2007. The co-occurrence and interactions of large invertebrate predators in relation to the Bythotrephes invasion. PhD Dissertation. University of Toronto at Mississauga, Mississauga.Google Scholar
  10. Foster, S. E. & W. G. Sprules, 2009. Effects of the Bythotrephes invasion on native predatory invertebrates. Limnology and Oceanography 54: 757–769.CrossRefGoogle Scholar
  11. Foster, S. E. & W. G. Sprules, 2010. Effects of Bythotrephes on the trophic position of native macroinvertebrates. Canadian Journal of Fisheries and Aquatic Sciences 67: 58–69.CrossRefGoogle Scholar
  12. Herzig, A. & B. Auer, 1990. The feeding behavior of Leptodora kindti and its impact on the zooplankton community of Neusiedler See (Austria). Hydrobiologia 198: 107–117.CrossRefGoogle Scholar
  13. Hovius, J. T., B. E. Beisner & K. S. McCann, 2006. Epilimnetic rotifer community responses to Bythotrephes longimanus invasion in Canadian Shield lakes. Limnology and Oceanography 51: 1004–1012.CrossRefGoogle Scholar
  14. Laforsch, C. & R. Tollrian, 2004. Inducible defenses in multipredator environments: cyclomorphosis in Daphnia cucullata. Ecology 85: 2302–2311.CrossRefGoogle Scholar
  15. Lunte, C. C. & C. Luecke, 1990. Trophic interactions of Leptodora in Lake Mendota. Limnology and Oceanography 35: 1091–1100.CrossRefGoogle Scholar
  16. MacIsaac, H. J., J. V. M. Borbely, J. Muirhead & P. A. Graniero, 2004. Backcasting and forecasting biological invasions of inland lakes. Ecological Applications 14: 773–783.CrossRefGoogle Scholar
  17. Manca, M. & P. Comoli, 1995. Seasonal changes in size of the feeding basket of Leptodora kindtii (Focke) in Lago Maggiore as related to variations in prey size selection. Limnology and Oceanography 40: 834–838.CrossRefGoogle Scholar
  18. Mills, E. L., J. M. Casselman, R. Dermott, J. D. Fitzsimons, G. Gal, K. T. Holeck, J. A. Hoyle, O. E. Johannsson, B. F. Lantry, J. C. Makarewicz, E. S. Millard, I. F. Munawar, M. Munawar, R. O’Gorman, R. W. Owens, L. G. Rudstam, T. Schaner & T. J. Stewart, 2003. Lake Ontario: food web dynamics in a changing ecosystem (1970–2000). Canadian Journal of Fisheries and Aquatic Sciences 60: 471–490.CrossRefGoogle Scholar
  19. Milne, S. W., B. J. Shuter & W. G. Sprules, 2005. The schooling and foraging ecology of lake herring (Coregonus artedi) in Lake Opeongo, Ontario, Canada. Canadian Journal of Fisheries and Aquatic Sciences 62: 1210–1218.Google Scholar
  20. Nero, R. W. & W. G. Sprules, 1986. Zooplankton species abundance and biomass in relation to occurrence of Mysis relicta (Malacostraca, Mysidacea). Canadian Journal of Fisheries and Aquatic Sciences 43: 420–434.CrossRefGoogle Scholar
  21. Ontario Ministry of the Environment, 1983. Handbook of analytical methods for environmental samples. Technical Report Ontario Ministry of the Environment, Laboratory Services and Applied Research Branch, Toronto.Google Scholar
  22. Parker Stetter, S. L., L. D. Witzel, L. G. Rudstam, D. W. Einhouse & E. L. Mills, 2005. Energetic consequences of diet shifts in Lake Erie rainbow smelt (Osmerus mordax). Canadian Journal of Fisheries and Aquatic Sciences 62: 145–152.CrossRefGoogle Scholar
  23. Prepas, E., 1978. Sugar-frosted Daphnia: improved fixation technique for Cladocera. Limnology and Oceanography 23: 557–559.CrossRefGoogle Scholar
  24. R Development Core Team, 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  25. Rivier, I., 1998. The predatory Cladocera (Onychopoda: Podonidae, Polyphemidae, Cercopagidae) and Leptodorida of the world. Backhuys Publishing, Leiden, 214 pp.Google Scholar
  26. Sherwood, G. D., J. Kovecses, A. Hontela & J. B. Rasmussen, 2002. Simplified food webs lead to energetic bottlenecks in polluted lakes. Canadian Journal of Fisheries and Aquatic Sciences 59: 1–5.CrossRefGoogle Scholar
  27. StatSoft, 2001. STATISTICA 6. StatSoft Inc., Tulsa.Google Scholar
  28. Strecker, A. L. & S. E. Arnott, 2008. Invasive predator, Bythotrephes, has varied effects on ecosystem function in freshwater lakes. Ecosystems 11: 490–503.CrossRefGoogle Scholar
  29. Strecker, A. L., S. E. Arnott, N. D. Yan & R. Girard, 2006. Variation in the response of crustacean zooplankton species richness and composition to the invasive predator Bythotrephes longimanus. Canadian Journal of Fisheries and Aquatic Sciences 63: 2126–2136.CrossRefGoogle Scholar
  30. Vanderploeg, H. A., J. R. Liebig & M. Omair, 1993. Bythotrephes predation on Great Lakes’ zooplankton measured by an in situ method: implications for zooplankton community structure. Archiv für Hydrobiologie 127: 1–8.Google Scholar
  31. Wahlström, E. & E. Westman, 1999. Planktivory by the predacious cladoceran Bythotrephes longimanus: effects on zooplankton size structure and abundance. Canadian Journal of Fisheries and Aquatic Sciences 56: 1865–1872.Google Scholar
  32. Weisz, E. J. & N. D. Yan, 2010. Relative value of limnological, geographic and human use variables as predictors of the presence of Bythotrephes longimanus in Canadian Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences 67: 462–472.CrossRefGoogle Scholar
  33. Weisz, E. J. & N. D. Yan, 2011. Shifting invertebrate zooplanktivores: watershed-level replacement of the native Leptodora by the non-indigenous Bythotrephes in Canadian Shield lakes. Biological Invasions 13: 115–123.CrossRefGoogle Scholar
  34. Welschmeyer, N. A., 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography 39: 1985–1992.CrossRefGoogle Scholar
  35. Yan, N. D. & T. W. Pawson, 1997. Changes in the crustacean zooplankton community of Harp Lake, Canada, following invasion by Bythotrephes cederstroemi. Freshwater Biology 37: 409–425.CrossRefGoogle Scholar
  36. Young, J. D. & N. D. Yan, 2008. Modification of the diel vertical migration of Bythotrephes longimanus by the cold-water planktivore, Coregonus artedi. Freshwater Biology 53: 981–995.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Sophie E. Foster
    • 1
    • 2
  • W. Gary Sprules
    • 1
  • Angela L. Strecker
    • 3
    • 4
  1. 1.Department of BiologyUniversity of Toronto at MississaugaMississaugaCanada
  2. 2.Fisheries and Oceans CanadaOttawaCanada
  3. 3.Department of BiologyQueen’s UniversityKingstonCanada
  4. 4.Department of Environmental Science and ManagementPortland State UniversityPortlandUSA

Personalised recommendations