Advertisement

Hydrobiologia

, Volume 680, Issue 1, pp 233–245 | Cite as

Assessing the potential impact of an invasive species on a Mediterranean amphibian assemblage: a morphological and ecological approach

  • Daniel Escoriza
  • Dani Boix
Primary Research Paper

Abstract

The introduction of exotic species is a major cause of ecological disturbance and has recently been shown to promote the decline of some amphibian populations. In Western Europe, several amphibian species have been introduced in recent decades, among them Discoglossus pictus, impact of which in native amphibian communities is still unknown. We studied the potential impact of D. pictus by analysing the degree of niche overlap, assuming the possible existence of competitive interactions with native species. We have studied the structure of the anuran assemblage at local level, defining the morphospace occupied by native species and the habitat occupied by the different ecomorphs. The analysis of distance matrices suggested that there was a covariation between morphological characters and habitat selection. We determined the position of D. pictus within the morphospace of the native anuran community, patterns of co-occurrence among alien, and native species and habitat selection. The potential effect of climate on local assemblages had been controlled based on data obtained from climate models. These analysis showed that D. pictus was clustered with the benthic guild, selected positively small ephemeral ponds and was a thermophilic species. Based on these results, a greater degree of niche overlap was expected with Bufo calamita and Pelodytes punctatus. The definition of morphological groups can be useful to understand the invaded assemblage structure and the potential effect of an alien frog on native communities.

Keywords

Anuran larvae Co-occurrence Discoglossus pictus Morphological guilds Temporary ponds 

Notes

Acknowledgments

We want to thank to the Ministerio de Educación y Ciencia, Programa de Investigación Fundamental which funded the research performed in Spanish territory (ref. GL2008 05778/BOS). The Departament de Medi Ambient de Catalunya granted permits to collect larvae specimens in Girona, Spain (ref. SF/574). The authors wish to thank to Albert Ruhí, Joan Garcia-Porta, Jordi Sala, Stéphanie Gascón, Mònica Martinoy, Carles Feo, Mar Comas and Elisenda Montserrat for their suggestions and help in the field work. The authors are also grateful to two anonymous reviewers whose comments have helped in improving the manuscript.

References

  1. Adams, M. J., 2000. Pond permanence and the effects of exotic vertebrates on anurans. Ecological Applications 10: 559–568.CrossRefGoogle Scholar
  2. Alford, R. A., 1999. Ecology: resource use, competition and predation. In McDiarmid, R. W. & R. Altig (eds), Tadpoles, the Biology of Anuran Larvae. University of Chicago Press, Chicago, IL: 240–278.Google Scholar
  3. Alford, R. A. & H. M. Wilbur, 1985. Priority effects in experimental pond communities: competition among Bufo and Rana. Ecology 66: 1097–1105.CrossRefGoogle Scholar
  4. Altig, R. & G. F. Johnston, 1989. Guilds of anuran larvaes: relationships among developmental modes, morphologies, and habitats. Herpetological Monographs 3: 81–109.CrossRefGoogle Scholar
  5. Arif, S., D. C. Adams & J. A. Wicknick, 2007. Bioclimatic modelling, morphology, and behaviour reveal alternative mechanisms regulating the distributions of two parapatric salamander species. Evolutionary Ecological Research 9: 843–854.Google Scholar
  6. Banks, B. & T. J. C. Beebee, 1987. Spawn predation and larval growth inhibition as mechanisms for niche separation in anurans. Oecologia 72: 569–573.CrossRefGoogle Scholar
  7. Bardsley, L. & T. J. C. Beebee, 2001. Non-behavioural interference competition among anuran larvae under semi-natural conditions. Oecologia 128: 360–367.CrossRefGoogle Scholar
  8. Barnett, H. K. & J. S. Richardson, 2002. Predation risk and competition effects on the life-history characteristics of larval Oregon spotted frog and larval red-legged frog. Oecologia 132: 436–444.CrossRefGoogle Scholar
  9. Beard, K. H. & W. C. Pitt, 2005. Potential consequences of the coqui frog invasion in Hawaii. Diversity and Distributions 11: 427–433.CrossRefGoogle Scholar
  10. Beja, P. & R. Alcazar, 2003. Conservation of Mediterranean temporary ponds under agricultural intensification: an evaluation using amphibians. Biological Conservation 114: 317–326.CrossRefGoogle Scholar
  11. Boix, D., J. Sala, X. D. Quintana & R. Moreno-Amich, 2004. Succession of the animal community in a Mediterranean temporary pond. Journal North American Benthological Society 23: 29–49.CrossRefGoogle Scholar
  12. Cadi, A. & P. Joly, 2004. Impact of the introduction of the red-eared slider (Trachemys scripta elegans) on survival of the European pond turtle (Emys orbicularis). Biodiversity and Conservation 13: 2511–2518.CrossRefGoogle Scholar
  13. Campeny, R. & A. Montori, 1988. Periode de reproduction, ponte et distribution spatiale d’une population de Bufo bufo spinosus dans le Nord-Est Ibérique. Vie et Milieu 38: 101–110.Google Scholar
  14. Cancela da Fonseca, L., M. Cristo, M. Machado, J. Sala, J. Reis, R. Alcazar & P. Beja, 2008. Mediterranean temporary ponds in Southern Portugal: key faunal groups as management tools? Pan-American Journal of Aquatic Sciences 3: 304–320.Google Scholar
  15. Capula, M., 2007. Discoglossus pictus. In Lanza, B., F. Andreone, M. A. Bologna, C. Corti & E. Razzetti (eds), Fauna d’Italia Amphibia. Ed. Calderini, Bologna.Google Scholar
  16. Carranza, S. & E. N. Arnold, 2006. Systematics, biogeography, and evolution of Hemidactylus geckos (Reptilia: Gekonidae) elucidated using mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 38: 531–545.PubMedCrossRefGoogle Scholar
  17. Carrascal, L. M., E. Moreno & J. L. Telleria, 1990. Ecomorphological relationships in a group of insectivorous birds of temperate forests in winter. Holarctic Ecology 13: 105–111.Google Scholar
  18. Costa, G. C., C. Nogueira, R. B. Machado & G. Colli, 2007. Squamate richness in the Brazilian Cerrado and its environmental–climatic associations. Diversity and Distributions 13: 714–724.CrossRefGoogle Scholar
  19. Costello, J. H., S. P. Colin & J. O. Dabiri, 2008. Medusan morphospace: phylogenetic constraints, biomechanical solutions and ecological consequences. Invertebrate Biology 127: 265–290.CrossRefGoogle Scholar
  20. Crossland, M. R., 2000. Direct and indirect effects of the introduced toad Bufo marinus (Anura: Bufonidae) on populations of native anuran larvae in Australia. Ecography 23: 283–290.CrossRefGoogle Scholar
  21. Daszak, P., A. Streby, A. A. Cunningham, J. E. Longcore, C. C. Brown & D. Porter, 2004. Experimental evidence that the bullfrog (Rana catesbeiana) is a potential carrier of Chytridiomycosis, an emerging fungal disease of amphibians. Herpetological Journal 14: 201–207.Google Scholar
  22. Davis, A. K. & K. L. Grayson, 2007. Improving natural history research with image analysis: the relationship among skin color, sex, size and stage in adult red-spotted newts (Notophalmus viridiscens viridiscens). Herpetological Conservation and Biology 2: 65–70.Google Scholar
  23. Davis, A. K. & J. C. Maerz, 2007. Spot symmetry predicts body condition in spotted salamanders, Ambystoma maculatum. Applied Herpetology 4: 195–205.CrossRefGoogle Scholar
  24. Dayton, G. H. & L. A. Fitzgerald, 2001. Competition, predation, and the distributions of four desert anurans. Oecologia 129: 430–435.Google Scholar
  25. Dayton, G. H. & L. A. Fitzgerald, 2005. Priority effects and desert anuran communities. Canadian Journal of Zoology 83: 1112–1116.CrossRefGoogle Scholar
  26. Denoël, M., G. F. Ficetola, R. Cirovic, D. Radovic, G. Dzukic, M. L. Kalezic & T. D. Vukov, 2009. A multi-scale approach to facultative paedomorphosis of European newts (Salamandridae) in the Montenegrin karst: distribution pattern, environmental variables, and conservation. Biological Conservation 142(3): 509–517.CrossRefGoogle Scholar
  27. Díaz, S., M. Cabido & F. Casanoves, 1998. Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science 9(1): 113–122.CrossRefGoogle Scholar
  28. Diaz-Panigua, C., 1985. Larval diets related to the morphological characters of five anurans species in the Biological Reserve of Doñana (Huelva, Spain). Amphibia-Reptilia 6: 307–322.CrossRefGoogle Scholar
  29. Diaz-Panigua, C., 1987. Estudio en cautividad de la actividad alimenticia de siete especies de anuros. Revista Española de Herpetología 2: 189–197.Google Scholar
  30. Diaz-Panigua, C., 1990. Temporary ponds as breeding sites of amphibians at a locality in southwestern Spain. Herpetological Journal 1: 447–453.Google Scholar
  31. Denton, J. & T. J. C. Beebee, 1991. Palatability of anuran eggs and embryos. Amphibia-Reptilia 12: 111–114.CrossRefGoogle Scholar
  32. Escoriza, D., D. Espejo & M. M. Comas, 2007. Nuevo límite altitudinal para Discoglossus pictus Otth, 1837 (Anura: Discoglossidae) en el nordeste de Cataluña. Boletín de la Asociación Herpetológica Española 18: 24–25.Google Scholar
  33. Esteban, I., 1984. Notas herpetológicas breves. Boletín Herpetológico GHEZOC 1: 29–30.Google Scholar
  34. Franch, M., G. Llorente, A. Montori, A. Richter-Boix & S. Carranza, 2007. Discoglossus pictus beyond its known distributional range. Herpetological Review 38: 356–358.Google Scholar
  35. Frazer, J. F. D., 1964. Introduced species of amphibians and reptiles in mainland Britain. British Journal of Herpetology 3: 145–150.Google Scholar
  36. Fritz, U., M. Auer, A. Bertolero, M. Cheylan, T. Fattizzo, A. K. Hundsdörfer, M. M. Sampayo, J. L. Pretus, P. Široký & M. Wink, 2006. A rangewide phylogeography of Hermann’s tortoise, Testudo hermanni (Reptilia: Testudinidae): implications for taxonomy. Zoologica Scripta 35: 531–543.CrossRefGoogle Scholar
  37. García-París, M., C. Martin, J. Dorda & M. Esteban, 1989. Los anfibios y reptiles de Madrid. Ministerio de Agricultura, Pesca y Alimentación, Madrid.Google Scholar
  38. García-París, M., A. Montori & P. Herrero, 2004. Amphibia, Lissamphibia. In Ramos, M. A., et al. (eds), Fauna Iberica, Vol. 24. Museo Nacional de Ciencias Naturales, CSIC, Madrid.Google Scholar
  39. Gotelli, N. J., 2000. Null model analysis of species co-occurrence patterns. Ecology 81: 2606–2621.CrossRefGoogle Scholar
  40. Gotelli, N. J. & G. L. Entsminger, 2009. EcoSim: Null Models Software for Ecology. Version 7. Acquired Intelligence Inc & Kesey-Bear, Jericho, VT.Google Scholar
  41. Gotelli, N. J. & W. Ulrich, 2010. The empirical Bayes approach as a tool to identify non-random species associations. Oecologia 162: 463–477.PubMedCrossRefGoogle Scholar
  42. Guicking, D., R. A. Griffiths, R. D. Moore, U. Joger & M. Wink, 2006. Introduced alien or persecuted native? Resolving the origin of the viperine snake (Natrix maura) on Mallorca. Biodiversity and Conservation 9: 3045–3054.CrossRefGoogle Scholar
  43. Harris, D. J., M. A. Carretero, C. Corti & P. Lo Cascio, 2009. Genetic affinities of Tarentola mauritanica (Reptilia: Gekkonidae) from Lampedusa and Conigli islet (SW Italy). North-Western Journal of Zoology 5: 197–205.Google Scholar
  44. Hedges, S. B., J. Dudley & S. Kumar, 2006. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22: 2971–2972.PubMedCrossRefGoogle Scholar
  45. Heino, J., 2009. Species co-occurrence, nestedness and guild–environment relationships in stream macroinvertebrates. Freshwater Biology 54: 1947–1959.CrossRefGoogle Scholar
  46. Hijmans, R. J., L. Guarino, A. Jarvis, R. O’Brien & P. Mathur, 2009. DIVA-GIS vsn 7.1.7.Google Scholar
  47. Huston, M. A., 1999. Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos 86(3): 393–401.CrossRefGoogle Scholar
  48. Jolliffe, I. T., 2002. Principal Component Analysis. Springer, New York.Google Scholar
  49. Kiesecker, J. M., A. R. Blaustein & C. L. Miller, 2001. Potential mechanisms underlying the displacement of native red-legged frogs by introduced bullfrogs. Ecology 82: 1964–1970.CrossRefGoogle Scholar
  50. Kupferberg, S. J., 1997. The role of larval diet in anuran metamorphosis. American Zoologist 37: 146–159.Google Scholar
  51. Lanza, B., 1989. Discoglossus pictus. In Castanet, J. & R. Guyétant (eds), Atlas de repartition des Amphibiens et Reptiles de France. Société Herpétologique de France, Paris.Google Scholar
  52. Lawler, S. P. & P. J. Morin, 1993. Temporal overlap, competition and priority effects in larval anurans. Ecology 74: 174–182.CrossRefGoogle Scholar
  53. Lizana, M., R. Marquez & R. Martin-Sanchez, 1994. Reproductive biology of Pelobates cultripes (Anura: Pelobatidae) in Central Spain. Journal of Herpetology 28: 19–27.CrossRefGoogle Scholar
  54. Llorente, G., A. Montori, X. Santos & M. A. Carretero, 1995. Atlas dels Amfibis i Rèptils de Catalunya i Andorra. Ed. El Brau, Figueres.Google Scholar
  55. Llorente, G., A. Montori, X. Santos & M. A. Carretero, 2004. Discoglossus pictus. In Pleguezuelos, J. M., R. Márquez & M. Lizana (eds), Atlas y Libro Rojo de los Anfibios y Reptiles de España. Ministerio de Medio Ambiente, Madrid.Google Scholar
  56. Losos, J. B., 1990. Ecomorphology, performance capability, and scaling of West Indian Anolis lizards: an evolutionary analysis. Ecological Monographs 60: 369–388.CrossRefGoogle Scholar
  57. Luiselli, L., 2006. Resource partitioning and interspecific competition in snakes: the search for general geographical and guild patterns. Oikos 114: 193–211.CrossRefGoogle Scholar
  58. Manly, B. F. J., 1991. Randomization and Monte Carlo methods in biology. Chapman Hall, London.Google Scholar
  59. Marroig, G. & J. M. Cheverud, 2001. A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology and ontogeny during cranial evolution of new world monkeys. Evolution 55(12): 2576–2600.PubMedGoogle Scholar
  60. McDiarmid, R. W. & R. Altig, 1999. The Biology of Anuran Larvae. University Chicago Press, Chicago.Google Scholar
  61. Montori, A., 1997. Amfibis i rèptils del Massís del Garraf. La Sentiu, Quaderns de Divulgació 22: 1–65.Google Scholar
  62. Montori, A., G. Llorente, A. Richter-Boix, D. Villero, M. Franch & A. Garriga, 2007. Colonización y efectos potenciales de la especie invasora Discoglossus pictus sobre las especies nativas. Munibe 25: 14–27.Google Scholar
  63. Moore, R. D., R. A. Griffiths & A. Román, 2004. Distribution of the Mallorcan midwife toad (Alytes muletensis) in relation to landscape topography and introduced predators. Biological Conservation 116: 327–332.CrossRefGoogle Scholar
  64. Morin, P. J., 1983. Predation, competition and the composition of anuran guilds. Ecological Monographs 53: 119–138.CrossRefGoogle Scholar
  65. Neveu, A., 1997. L’introduction d’espèces allochtones de grenuilles vertes en France, deux problèmes différents: celui de R. catesbeiana et celui des taxons non présents du complexe esculenta. Bulletin Français de la Pêche et de la Pisciculture 344(345): 165–171.CrossRefGoogle Scholar
  66. Nudds, T. D., 1982. Ecological separation of grebes and coots: interference competition or microhabitat selection? The Wilson Bulletin 94(4): 505–514.Google Scholar
  67. Østbye, K., P. A. Amundsen, L. Bernatchez, A. Klemetsen, R. Knudsen, R. Kristoffersen, T. F. Næsje & K. Hindar, 2006. Parallel evolution of ecomorphological traits in the European whitefish Coregonus lavaretus (L.) species complex during posglacial times. Molecular Ecology 15: 3983–4001.PubMedCrossRefGoogle Scholar
  68. Pérez-Barbería, F. J. & I. J. Gordon, 1999. The functional relationship among feeding type and jaw and cranial morphology in ungulates. Oecologia 118(2): 157–165.CrossRefGoogle Scholar
  69. Petranka, J. W. & C. A. Kennedy, 1999. Pond tadpoles with generalized morphology: is it time to reconsider their functional roles in aquatic communities? Oecologia 120: 621–623.CrossRefGoogle Scholar
  70. Philips, R. B., C. S. Winchell & R. H. Schmidt RH, 2007. Dietary overlap of an alien and native carnivore of San Clemente Island, California. Journal of Mammalogy 88: 173–180.CrossRefGoogle Scholar
  71. Pianka, E. R., 1974. Niche overlap and diffuse competition. Proceedings of the National Academy of Sciences 71: 2141–2145.CrossRefGoogle Scholar
  72. Rasband, W. S., 2009. ImageJ. U. S. National Institutes of Health. http://rsb.info.nih.gov/ij. Accessed December 2009.
  73. Recuero, E., A. Iraola, X. Rubio, A. Machordom & M. Garcia-Paris, 2007. Mitochondrial differentiation and biogeography of Hyla meridionalis (Anura: Hylidae): an unusual phylogeographical pattern. Journal of Biogeography 34: 1207–1219.CrossRefGoogle Scholar
  74. Relyea, R. A., 2002. Competitor-induced plasticity in tadpoles: consequences, cues, and connections to predator-induced plasticity. Ecological Monographs 72: 523–540.CrossRefGoogle Scholar
  75. Rezende, E. L., J. E. Lavabre, P. R. Guimaraes, P. Jordano & J. Bascompte, 2007. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448: 925–928.PubMedCrossRefGoogle Scholar
  76. Richardson, J. M. L., 2001. The relative roles of adaptation and phylogeny in determination of larval traits in diversifying anuran lineages. American Naturalist 157: 282–299.PubMedCrossRefGoogle Scholar
  77. Richter-Boix, A., G. Llorente & A. Montori, 2007. Hierarchical competition in pond-breeding anuran larvae in a Mediterranean area. Amphibia-Reptilia 28: 247–261.CrossRefGoogle Scholar
  78. Rivas-Martínez, S., 2009. Worldwide Bioclimatic Classification System. http://www.globalbioclimatics.org. Accessed July 2009.
  79. Rossenberg, M. S., 2009. PASSaGE: Pattern Analysis, Spatial Statistics, and Geographic Exegesis. http://www.passagesoftware.net/index.php. Accessed November 2009.
  80. Savidge, J. A., F. J. Qualls & G. H. Rodda, 2007. Reproductive biology of the brown snake Boiga irregularis (Reptilia: Colubridae) during colonization of Guam and comparison with that in their native range. Pacific Science 61: 191–199.CrossRefGoogle Scholar
  81. Schoener, T. W., 1974. Resource partitioning in ecological communities. Science 185: 27–39.PubMedCrossRefGoogle Scholar
  82. Smith, K. G., 2005. Effects of nonindigenous tadpoles on native tadpoles in Florida: evidence of competition. Biological Conservation 123: 433–441.CrossRefGoogle Scholar
  83. Sodhi, N. S., D. Bickford, A. C. Diesmos, T. M. Lee, L. P. Koh, B. W. Brook, C. H. Sekercioglu & C. J. A. Bradshaw, 2008. Measuring the meltdown: drivers of global amphibian extinction and decline. PLoS ONE 3(2): e1636.PubMedCrossRefGoogle Scholar
  84. Steinwascher, K., 1979. Competitive interactions among tadpoles: responses to resource levels. Ecology 60: 1172–1183.CrossRefGoogle Scholar
  85. Tejedo, M., 1991. Effects of predation by two species of sympatric tadpoles on embryo survival in natterjack toads (Bufo calamita). Herpetologica 47: 322–327.Google Scholar
  86. Ujvari, B. & T. Madsen, 2009. Increased mortality of naive varanid lizards after the invasion of non-native cane toads (Bufo marinus). Herpetological Conservation and Biology 4: 248–251.Google Scholar
  87. Ulrich, W., 2008. Pairs. www.uni.torum.pl. Accessed July 2010.
  88. Wauters, L. A., J. Gurnell & A. Martinoli, 2002. Interspecific competition among native Eurasian red squirrels and alien grey squirrels: does resource partitioning occur? Behavioral Ecology and Sociobiology 52: 332–341.CrossRefGoogle Scholar
  89. Wellborn, G. A., D. K. Skelly & E. E. Werner, 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology evolution and Systematics 27: 337–363.CrossRefGoogle Scholar
  90. Werner, E. E., D. K. Skelly, R. A. Relyea & L. Yurewicz, 2007. Amphibian species richness across environmental gradients. Oikos 116: 1697–1712.CrossRefGoogle Scholar
  91. Wilbur, H. M., 1980. Complex life cycles. Annual Review of Ecology, Evolution and Systematics 11: 67–93.CrossRefGoogle Scholar
  92. Wilbur, H. M., 1987. Regulation of structure in complex systems: experimental temporary pond communities. Ecology 68: 1437–1452.CrossRefGoogle Scholar
  93. Wintrebert, P., 1908. Présence à Banyuls-sur-Mer (Pyrénées-Orientales) du Discoglossus pictus Otth. Bulletin de la Société zoologique de France 33: 54.Google Scholar
  94. Woodward, B. D., 1982. Tadpole competition in a desert anuran community. Oecologia 54: 96–100.CrossRefGoogle Scholar
  95. WorldClim, 2009. Global Climate Data, v. 1.4. http://www.worldclim.org. Accessed February 2009.
  96. Zangari, F., R. Cimmaruta & G. Nascetti, 2006. Genetic relationships of the western Mediterranean painted frogs based on allozymes and mitochondrial markers: evolutionary and taxonomic inferences (Amphibia, Anura, Discoglossidae). Biological Journal Linnean Society 87: 515–536.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Aquatic Ecology and Department of Environmental Science, Faculty of SciencesUniversity of GironaGironaSpain

Personalised recommendations