, 676:249 | Cite as

Cladoceran assemblages in a karstic lake as indicators of hydrological alterations

  • Charo López-Blanco
  • María Rosa Miracle
  • Eduardo Vicente


The anthropogenic impact on wetlands has increased during the last centuries when infrastructures such as canals or dams, have proliferated. In this article, we have used cladoceran sub-fossils to investigate the effects of a canal on lake El Tobar (Spain). The canal has been transferring water from a reservoir, built in another valley, into this lake since its construction in the mid-1960s. Cladoceran remains were analyzed in two sediment profiles from each of the two sub-basins of the lake. The sedimentary sequences showed that the mentioned human activity provoked a clear shift in the cladoceran community. A PCA was performed with samples from both sub-basins to detect the direction and nature of the changes. Before water transference, the phytophilous chydorid community, represented by Acroperus angustatus in one sub-basin and by both A. angustatus and Graptoleberis testudinaria in the other sub-basin, were well developed. After the construction of the canal and the inflow of additional yet different water from the reservoir, the proportion of chydorids relative to total cladoceran diminished considerably; this was mainly due to the invasion of Bosmina longirostris. These results indicate that the hydrological alteration caused a shift from an oligotrophic, shallower lake with a rich plant-associated cladoceran community to a more eutrophic lake with a predominant planktonic cladoceran community; and that cladoceran remains are a powerful tool to detect hydrological changes and eutrophication.


Biological introduction Bosmina longirostris Cladoceran sub-fossils Hydrological alterations Lake El Tobar 



The authors are very grateful to Dr. Blas Valero for sediment core extractions and TOC data. The authors also thank Dr. Santiago Hurtado for 210Pb and 137Cs analyses, for the application of chronological models to these results and his discussion about them. The INM (Spanish Institute of Meteorology) which kindly provided the meteorological data from the stations near the lake is greatly acknowledged. CLB acknowledges her grant (FPU scholarship) from the MICINN. This study was financed by an I+D project MICINN—FEDER CGL2005-04040/BOS and by a AC CGL2009-06772-E/BOS grant to EV. The authors also thank the two anonymous reviewers for comments which improved the quality of the manuscript.


  1. Ahlen, E., P. Bystrom, T. Korsman, L. Persson & M. Reinikainen, 2011. Relationships between planktivore community capacity (PCC) and cladoceran microfossils in nothern Swedish lakes. Fundamental and Applied Limnology 178: 315–324.CrossRefGoogle Scholar
  2. Alam, A. & A. A. Khan, 1998. On the record of Cladoceran Leydigia acanthocercoides (Chydoridae) from Aligarh. Journal of Bombay. 95: 143–144.Google Scholar
  3. Allue-Andrade, J. L., 1990. Atlas fitoclimático de España. Ministerio de Agricultura. Pesca y Alimentación, Madrid.Google Scholar
  4. Alonso, M., 1996. Fauna Iberica: Branquiopoda. Museo de Ciencias Naturales. Consejo Superior de Investigaciones Científicas (CSIC), Madrid.Google Scholar
  5. Appleby, P. G., 2008. Three decades of dating recent sediments by fallout radionuclides: a review. The Holocene 18: 83–93.CrossRefGoogle Scholar
  6. Appleby, P. G., P. J. Nolan, D. W. Gifford, M. J. Goffrey, F. Oldfield, N. J. Anderson & R. W. Battarbee, 1986. 210Pb dating by low background gamma counting. Hydrobiologia 143: 21–27.CrossRefGoogle Scholar
  7. Armengol, X. & M. R. Miracle, 1999. Zooplankton communities in doline lakes and pools, in relation to some bathymetric parameters and physical and chemical variables. Journal of Plankton Research 21: 2245–2261.CrossRefGoogle Scholar
  8. Battarbee, R. W., 2000. Palaeolimnological approaches to climate change, with special regard to the biological record. Quaternary Science Reviews 19: 107–124.CrossRefGoogle Scholar
  9. Beisner, B. E., E. McCauley & F. J. Wrona, 1997. The influence of temperature and food chain length on plankton predator-prey dynamics. Canadian Journal of Fisheries and Aquatic Sciences 54: 586–595.Google Scholar
  10. Bjerring, R., E. Becares, S. Declerck, E. M. Gross, L. A. Hansson, T. Kairesalo, M. Nykänen, A. Halkiewicz, R. Kornijów, J. M. Conde-Porcuna, M. Seferlis, T. Noges, B. Moss, S. L. Amsinck, B. V. Odgaard & E. Jeppesen, 2009. Subfossils Cladocera in relation to contemporary environmental variables in 54 Pan- European lakes. Freshwater Biology 54: 2401–2417.CrossRefGoogle Scholar
  11. Boronat, D., 1998. Distribución de micro crustáceos en lagunsas de Castilla- La Mancha. Ciclos estacionales y migración vertical en lagunas kársticas estratificadas. Department of Microbiology and Ecology. PhD thesis. University of Valencia, Valencia, Spain.Google Scholar
  12. Boronat, D., M. R. Miracle & X. Armengol, 2001. Cladoceran assemblages in a mineralization gradient. Hydrobiologia 442: 75–88.CrossRefGoogle Scholar
  13. Boucherle, M. M. & H. Züllig, 1983. Cladoceran remains as evidence of change in trophic state in three Swiss lakes. Hydrobiologia 103(1): 141–146.CrossRefGoogle Scholar
  14. Brottrell, H. H., 1975. Relationship between temperature and duration of egg development in some epiphytic cladocera and copepoda from River Thames, reading, with a discussion of temperature functions. Oecologia 18: 63–84.Google Scholar
  15. De Eyto, E. & K. Irvine, 2001. The response of three chydorid species to temperature, pH and food. Hydrobiologia 459: 165–172.CrossRefGoogle Scholar
  16. Galbarcyk-Gasiorowska, L., M. Gąsiorowski & K. Szeroczyńska, 2009. Reconstruction of human influence during the last two centuries on two small oxbow lakes near Warsaw (Poland). Hydrobiologia 631: 173–183.CrossRefGoogle Scholar
  17. Gąsiorowski, M. & K. Szeroczyńska, 2004. Abrupt changes in Bosmina (Cladocera, Crustacea) assemblages during the history of the Ostrowite Lake (Northern Poland). Hydrobiologia 526: 137–144.CrossRefGoogle Scholar
  18. Gillooly, J. F. & S. I. Dodson, 2000. Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans. Limnology and Oceanography 45: 22–30.CrossRefGoogle Scholar
  19. Grimm, E. C., 1987. CONISS. A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13: 13–35.CrossRefGoogle Scholar
  20. Hofmann, W., 1998. Cladocerans and chironomids as indicators of lake level changes in north temperate lakes. Journal of Paleolimnology 19: 55–62.CrossRefGoogle Scholar
  21. Hofmann, W., 2003. The long-term succession of high-altitude cladoceran assemblages: a 9000-year record from Sägistalsee (Swiss Alps). Journal of Paleolimnology 30: 291–296.CrossRefGoogle Scholar
  22. Hyvärinen, H. & P. Alhonen, 1994. Holocene lake level changes in the Fennoscandian tree-line region, western Finnish Lapland: diatom and cladoceran evidence. The Holocene 4: 251–258.CrossRefGoogle Scholar
  23. IPCC, 2007. Cambio climático 2007: Informe de sínteis. Contribución de los Grupos de trabajo I, II, III al Cuarto Informe de evaluación del Grupo Intergubernamental de Expertos sobre Cambio Climático. Cambridge University Press, Ginebra.Google Scholar
  24. Jeppesen, E., J. P. Jensen, T. L. Lauridsen, S. L. Amsinck, K. Christoffersen, M. Sondergaard & S. F. Mitchell, 2003. Sub-fossils of cladocerans in the surface sediment of 135 lakes as proxies for community structure of zooplankton, fish abundance and lake temperature. Hydrobiologia 491: 321–330.CrossRefGoogle Scholar
  25. Johasson, L. S., S. L. Amsinck, R. Bjerring & E. Jeppesen, 2005. Mid- to late-Holocene land-use change and lake development at Dallund So, Denmark: trophic structure inferred from cladoceran subfossils. The Holocene 15: 1143–1151.CrossRefGoogle Scholar
  26. Kamenik, C., K. Szeroczyńska & R. Schmidt, 2007. Relationship among recent Alpine Cladocera remains and their environment: implications for climate-change studies. Hydrobiologia 594: 33–46.CrossRefGoogle Scholar
  27. Korhola, A., H. Olander & T. Blom, 2000. Cladoceran and chironomid assemblages as quantitative indicators of water depth in subartic Fennoscandian lakes. Journal of Paleolimnology 24: 43–54.CrossRefGoogle Scholar
  28. Korhola, A., M. Tikkanen & J. Weckström, 2005. Quantification of Holocene lake-level changes in Finnish Lapland using a cladocera-lake depth transfer model. Journal of Paleolimnology 34: 175–190.CrossRefGoogle Scholar
  29. Legendre, P. & H. J. H. Birks, 2010. From Classical to Canonical ordination. In Birks, H. J. B., A. F. Lotter, S. Juggins & J. P. Smol (eds), Tracking Environmental Change Using Lake Sediments Volume 7. Springer, Dordrecht, The Netherlands.Google Scholar
  30. Lepš, J. & P. Šmilauer, 2003. Multivariate Analysis of Ecological Data Using Canoco. Cambridge University Press, Cambridge.Google Scholar
  31. Liu, G., Z. Liu, Y. Li, F. Chan, B. Gu & J. M. Smoak, 2009. Effects of fish introduction and eutrophication on the cladoceran community in Lake Fuxian, a deep oligotrophic lake in southwest China. Journal of Paleolimnology 42(3): 427–435.CrossRefGoogle Scholar
  32. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the past environmental conditions in the Alps. 1. Climate. Journal of Paleolimnology 18: 395–420.CrossRefGoogle Scholar
  33. Lotter, A. F., H. J. B. Birks, U. Eicher, W. Hofmann, W. Schwander & L. Wick, 2000. Younger Dryas and Allerod summer temperatures at Gerzensee (Switzerland) inferred from fossil pollen and cladoceran assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 159: 349–361.CrossRefGoogle Scholar
  34. Luoto, T. P., L. Nevalainen & K. Sarmaja-Korjonen, 2008. Multiproxy evidence for the “Little Ice Age” from Lake Hampträsk, Southern Finland. Journal of Paleolimnology 40: 1097–1113.Google Scholar
  35. Margaritora, F. G., 1985. Cladocera v. XXIII. Fauna d’Italia v. XXIII: Cladocera. In Calderini (ed.). Bologna, Italy: 399 pp.Google Scholar
  36. Mason, C. F. & M. M. Abdulhussein, 1991. Population-dynamics and production od Daphnia hyalina and Bosmina longirostris in a shallow, eutrophic reservoir. Freshwater Biology 25: 243–260.CrossRefGoogle Scholar
  37. Mezquita, F. & M. R. Miracle, 1997. Chydorid assemblages in the sedimentary sequence of Lake La Cruz (Spain) subject to water level changes. Hydrobiologia 360: 277–285.CrossRefGoogle Scholar
  38. Miracle, M. R., 1974. Niche structure in freshwater zooplankton: a principal components approach. Ecology 55: 1306–1317.CrossRefGoogle Scholar
  39. Miracle, M. R., J. Armengol-Díaz & M. J. Dasí, 1993. Extreme meromixis determines strong differential planktonic vertical distributions. Verhandlungen International Verein Limnologie 25: 705–710.Google Scholar
  40. Molina, J. A. & J. Maldonado, 2002. Distribución de la vegetación palustre en cuatro lagunas celtibérico-alcarreñas. Ecología 16: 73–82.Google Scholar
  41. Naseli-Flores, L. & R. Barone, 1997. Importance of water-level fluctuation on population dynamics of cladocerans in a hypertrophic reservoir (Lake Arancio, south-west Sicily, Italy). Hydrobiologia 360: 223–232.CrossRefGoogle Scholar
  42. Roach, W. J., J. B. Heffernan, N. B. Grimm, J. R. Arrowsmith, C. Eisinger & T. R. Rycheneret, 2008. Unintended consequences of urbanization for aquatic ecosystems: a case study from Arizona Desert. BioScience 58: 715–727.CrossRefGoogle Scholar
  43. Robbins, J. A., 1978. Geochemical and geophysical applications of radioactive lead. In Nriagu, J. O. (ed.), Biogeochemistry of Lead in the Environment. Elsevier, Amsterdam: 285–293.Google Scholar
  44. Romero-Viana, L., M. R. Miracle, C. López-Blanco, E. Cuna, G. Vilaclara, J. García-Orellana, B. J. Keely, A. Camacho & E. Vicente, 2009. Sedimentary multiproxy response to hydroclimatic variability in Lagunillo del Tejo(Spain). Hydrobiologia 631: 231–245.CrossRefGoogle Scholar
  45. Sarmaja-Korjonen, K., 2001. Correlation of fluctuations in cladoceran planktonic-littoral ratio between three cores from a small lake in southern Finland: Holocene water-level changes. The Holocene 11: 53–63.CrossRefGoogle Scholar
  46. Sarmaja-Korjonen, K. & P. Alhonen, 1999. Cladoceran and diatom evidence of lake-level fluctuations from a Finnish lake and the effect of aquatic-moss layers on microfossils assemblages. Journal of Paleolimnology 22: 277–290.CrossRefGoogle Scholar
  47. Sarmaja-Korjonen, K., S. Kultti, N. Solovieva & M. Väliranta, 2003. Mid-Holocene palaeoclimatic and palaeohydrological conditions in northeastern European Russia: a multi-proxy study of Lake Vankavad. Journal of Paleolimnology 30: 415–426.CrossRefGoogle Scholar
  48. Schmidt, R., J. Müller, R. Drescher-Schneider, R. Krisai, K. Szeroczyńska & A. Baric, 2000. Changes in lake level and trophy at Lake Vrana, a large karstic lake on the Island of Cres (Croatia), with respect to palaeoclimate and anthropogenic impacts during the last approx. 16,000 years. Journal of Limnology 59: 113–130.Google Scholar
  49. Smirnov, N. N., 1970. Fauna of the U.R.S.S., Crustacea. Vol 1. No 2. Chydoridae I.P.S.T., Jerusalem: 644 pp.Google Scholar
  50. Szeroczyńska, K., 1998a. Palaeolimnological investigations in Poland based on Cladocera (Crustacea). Palaeogeography, Palaeoclimatology, Palaeoecology 140: 335–345.CrossRefGoogle Scholar
  51. Szeroczyńska, K., 1998b. Anthropogenic transformation of nine lakes in Central Poland from Mesolithic to modern times in the light of Cladocera analysis. Studia Geologica Polonica 112: 123–165.Google Scholar
  52. Szeroczyńska, K., 2002. Human impact on lakes recorded in the remains of Cladocera (Crustacea). Quaternary International 95–96: 165–174.CrossRefGoogle Scholar
  53. Szeroczyńska, K. & K. Sarmaja-Korjonen, 2007. Atlas of Subfossils Cladocera from Central and Northern Europe. Friends of the lower Vistula Society, Swiecie (Poland).Google Scholar
  54. Thorp, J. H. & A. P. Covich, 2001. Ecology and Classification of North American Freshwater Invertebrates. Academic Press, San Diego, California.Google Scholar
  55. Vadadi-Fülop, C. S., G. Mészáros, G. Jablonszky & L. Hufnagel, 2008. The zooplankton of the Ráckeve-Soroksár Danube: spatio-temporal changes and similarity patterns. Applied Ecology and Environmental Research 6: 121–148.Google Scholar
  56. Vicente, E., A. Camacho & M. A. Rodrigo, 1993. Morphometry and physico-chemistry of the crinogenic meromictic lake El Tobar (Spain). Verhandlungen International Verein Limnologie 25: 698–704.Google Scholar
  57. Vijverberg, J., 1980. Effect of temperature in laboratory studies on developments and growth of Cladocera and Copepoda from Tjeukemeer, The Netherlands. Freshwater Biology 10: 317–340.CrossRefGoogle Scholar
  58. Xu, L., B. P. Han, K. V. Damme, A. Vierstraete, J. R. Vanfleteren & H. J. Dumont, 2011. Biogeography and evolution of the Holarctic zooplankton genus Letodora (Crustacea: Branchiopoda: Haplopoda). Journal of Biogeography 38: 359–370.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Charo López-Blanco
    • 1
  • María Rosa Miracle
    • 1
  • Eduardo Vicente
    • 1
  1. 1.Department of Microbiology and EcologyUniversity of ValenciaValenciaSpain

Personalised recommendations