Advertisement

Hydrobiologia

, 676:187 | Cite as

Climate-related changes during the Late Glacial and early Holocene in northern Poland, as derived from the sediments of Lake Sierzywk

  • Krystyna Milecka
  • Grzegorz Kowalewski
  • Krystyna Szeroczyńska
CLADOCERA AS INDICATORS

Abstract

Reconstruction of past climate change and ecosystem response is important to correctly assess the impacts of global warming. In this study, we provide a paleoenvironmental record of in-lake and catchment changes in northern Poland during the Late Glacial and early Holocene using various biotic proxies (pollen, macrofossils and Cladocera) preserved in the lake sedimentary record. Chronology was derived from palynological correlation with a well-dated pollen sequence from nearby-lying Lake Ostrowite and some well-dated events of vegetation history in Central Europe. Pollen analysis provided information on regional climate change affecting vegetation dynamics, whereas macrofossils supplied substantial information on the response of local flora and fauna to climatic, geomorphological and limnological changes. Data were supplemented by analysis of Cladocera remains, which are of special importance because of their quick response to changes in trophic conditions and climate (especially temperature). The bottom of the sediment core reflects an initial stage of the lake formed during the late Alleröd. The Younger Dryas cooling apparently resulted in forest recession and presence of cold tolerant Cladocera species. Due to amelioration of climate at the end of the Younger Dryas and melting of ice, the lake deepened. The beginning of the Holocene was characterised by forest shrinkage and induced clear changes in local flora and fauna communities. The regional vegetation development deduced from the lake’s core is generally consistent with the vegetation history of central Europe. Due to the location of the site near the seashore (oceanic climate and western wind), signals of warming came earlier than inland and in eastern Poland.

Keywords

Climate changes Lake ecosystem Late Glacial/Holocene Northern Poland Palaeoecology 

Notes

Acknowledgements

The paleoecological study of the Lake Sierzywk sediments was carried out as part of the “Dynamics of postglacial trophy changes of Lobelia Lakes” project, funded by the Polish Ministry of Science and Higher Education, No. 2 P04G 057 28. Grateful acknowledgements are made to A. van Loon for improving the English writing and two anonymous reviewers for their valuable comments on the manuscript.

References

  1. Ammann, B., H. J. B. Birks, S. J. Brooks, U. Eicher, U. von Grafenstein, W. Hofmann, G. Lemdahl, J. Schwander, K. Tobolski & L. Wick, 2000. Quantification of biotic responses to rapid climatic changes around the Younger Dryas – a synthesis. Palaeogeography, Palaeoclimatology, Palaeoecology 159: 313–347.CrossRefGoogle Scholar
  2. Bałaga, K., T. Goslar & T. Kuc, 1998. A comparative study on the Late Glacial/Early Holocene climatic changes recorded in laminated sediments of Lake Perespilno – introductory data. In Ralska-Jasiewiczowa, M., T. Goslar, T. Madeyska & L. Starkel (eds), Lake Gościąż, Central Poland. A Monographic Study. Szafer Institute of Botany, Polish Academy of Sciences, Kraków: 175–180.Google Scholar
  3. Berglund, B. E., 1966. Late-Quaternary vegetation in eastern Blekinge, south-eastern Sweden. A pollen analytical study. Part II Post-glacial time. Opera Botanica 12: 1–180.Google Scholar
  4. Berglund, B. E. (ed.), 1986. Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester, UK.Google Scholar
  5. Berglund, B. E. & M. Ralska-Jasiewiczowa, 1986. Pollen analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester, UK: 455–483.Google Scholar
  6. Birks, H. H., 2000. Aquatic macrophyte vegetation development in Krakenes Lake, western Norway, during the Late-Glacial and early-Holocene. Journal of Paleolimnology 23: 7–19.CrossRefGoogle Scholar
  7. Birks, H. J. B. & H. H. Birks, 1980. Quaternary Palaeoecology. Edward Arnold Publishers, London.Google Scholar
  8. Blundell, A., D. Charman & K. Barber, 2008. Multiproxy late Holocene peat records from Ireland: towards a regional palaeoclimate curve. Journal of Quaternary Science 23: 59–71.CrossRefGoogle Scholar
  9. Choiński, A., 2006. Katalog jezior polskich. Wydawnictwo Naukowe UAM, Poznań.Google Scholar
  10. De la Mare, W. K., 1997. Abrupt mid-twentieth-century decline in Antarctic sea ice extent from whaling records. Nature 389: 57–60.CrossRefGoogle Scholar
  11. De Vleeschouwer, F., A. Cheburkin, G. Le Roux, N. Piotrowska, J. Sikorski, M. Lamentowicz, N. Fagel & M. Mauquoy, 2009. Multiproxy evidences of Little Ice Age palaeoenvironmental changes in a peat bog from northern Poland. Holocene 19(4): 625–637.CrossRefGoogle Scholar
  12. Finsinger, W. & W. Tinner, 2007. Pollen and plant macrofossils at Lac de fully (2135 m a.s.l.): Holocene forest dynamics on a highland plateau in the Valais, Switzerland. Holocene 17: 1119–1127.CrossRefGoogle Scholar
  13. Flössner, D., 1972. Branchiopoda, Branchiura. Die Tierwelt Deutschlands 60: 1–501.Google Scholar
  14. Flössner, D., 2000. Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys Publisher, Leiden, The Netherlands.Google Scholar
  15. Frey, D. G., 1986. Cladocera analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester, UK: 667–692.Google Scholar
  16. Frey, D. G., 1991. First subfossil records of Daphnia headshields and shells (Anomopoda, Daphniidae) about 10000 years old from northernmost Greenland, plus Alona guttata (Chydoridae). Journal of Paleolimnology 6: 193–197.CrossRefGoogle Scholar
  17. Grimm, E. C., 1992. Tilia and Tilia-Graph. Pollen spreadsheet and graphics programs. In 8th International Palynological Congress, Aix-en-Provence, 6–12 September 1992. Program and Abstracts: 56.Google Scholar
  18. Hald, M. & S. Korsen, 2008. The 8200 cal. yr BP event reflected in the Arctic fjord, Van Mijenfjorden, Svalbard. The Holocene 18: 981–990.CrossRefGoogle Scholar
  19. Hjelmroos-Ericsson, M., 1981. Holocene Development of Lake Wielkie Gacno Area, Northwestern Poland. Thesis 10, University of Lund, Sweden: 1–101.Google Scholar
  20. Hofmann, W., 2000. Response of the chydorid faunas to rapid climatic changes in four alpine lakes at different altitudes. Palaeogeography, Palaeoclimatology, Palaeoecology 159: 281–292.CrossRefGoogle Scholar
  21. Hultén, E. & M. Fries, 1986. Atlas of North European Vascular Plants: North of the Tropic of Cancer I–III. Koeltz Scientific Books, Königstein.Google Scholar
  22. Iversen, J., 1964. Plan indicators of Climate, Soil, and Other Factors During the Quaternary. Reports VI International Congress of Quaternary, Warsaw 1961, Sect. 2: 421–228.Google Scholar
  23. Johnsen, S. J., H. B. Clausen, W. Dansgaard, K. Fuhrer, N. Gundestrup, C. U. Hammer, P. Iversen, J. Jouzel, B. Stauffer & J. P. Steffensen, 1992. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359: 311–313.CrossRefGoogle Scholar
  24. Jones, S. T., J. D. Marshall, S. F. Crowley, A. Bedford, N. Richardson, J. Bloemendal & F. Oldfield, 2002. A high resolution, multiproxy Late-glacial record of climate change and intrasystem responses in Northwest England. Journal of Quaternary Science 17: 329–340.CrossRefGoogle Scholar
  25. Komarek, J. & V. Jankovska, 2001. Review of the green algal genus Pediastrum: implication for pollen-analytical research. Bibliotheca Phycologica 108: 1–127.Google Scholar
  26. Korhola, A. & M. Rautio, 2001. Cladocera and other branchiopod crustaceans. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments, Zoological Indicators, Vol. 4. Kluwer, Dordrecht: 5–41.CrossRefGoogle Scholar
  27. Kowalewski, G., S. Żurek, T. Schubert & G. Karcz, 2009. Initial development of floating mat in Małe Łowne Lake (N Poland). Limnological Review 9: 175–187.Google Scholar
  28. Kuc, T., K. Różański & M. Duliński, 1998. Isotopic indicators of the Late-Glacial/Holocene transition recorded in the sediments of Lake Gościąż. In Ralska-Jasiewiczowa, M., T. Goslar, T. Madeyska & L. Starkel (eds), Lake Gościąż, Central Poland, Vol. I. W. Szafer Institute of Botany, Kraków: 158–162.Google Scholar
  29. Lamentowicz, M. & M. Obremska, 2010. A rapid response of testate amoebae and vegetation to inundation of a kettle hole mire. Journal of Paleolimnology 3: 499–511.CrossRefGoogle Scholar
  30. Lamentowicz, M., K. Milecka, M. Gałka, A. Cedro, J. Pawlyta, N. Piotrowska, Ł. Lamentowicz & W. van der Knaap, 2009a. Climate- and human-induced hydrological change since AD 800 in an ombrotrophic mire in Pomerania (N Poland) tracked by tetate amoebae, macro-fossils, pollen, and tree-rings of pine. Boreas 38: 214–229.CrossRefGoogle Scholar
  31. Lamentowicz, M., Z. Balwierz, J. Forysiak, M. Kloss, M. Płóciennik, P. Kittel, J. Twardy, S. Żurek & J. Pawlyta, 2009b. Multiproxy study of anthropogenic and climatic changes in the last two millenia from a small mire in central Poland. Hydrobiologia 631: 213–230.CrossRefGoogle Scholar
  32. Lang, G., 1994. Quartäre Vegetationsgeschichte Europas. Gustav Fischer Verlag, Jena, Stuttgart, New York.Google Scholar
  33. Latałowa, M., 1999. Late Vistulian vegetation on Wolin Island (NW Poland)—the preliminary results. Quaternary Studies in Poland, Special Issue: 147–156.Google Scholar
  34. Latałowa, M., 2004. Late Glacial. In Ralska-Jasiewiczowa, M., M. Latałowa, K. Wasylikowa, K. Tobolski, E. Madeyska, H. E. Wright Jr. & C. Turner (eds), Late Glacial and Holocene history of vegetation in Poland based on isopollen maps. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków: 385–391.Google Scholar
  35. Latałowa, M., M. Kupryjanowicz & D. Nalepka, 2004a. Chenopodiaceae–Goosefoot family. In Ralska-Jasiewiczowa, M., M. Latałowa, K. Wasylikowa, K. Tobolski, E. Madeyska, H. E. Wright Jr. & C. Turner (eds), Late Glacial and Holocene History of Vegetation in Poland Based on Isopollen Maps. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków: 273–281.Google Scholar
  36. Latałowa, M., K. Tobolski & D. Nalepka, 2004b. Pinus L., subgenus Pinus (subgen. Diploxylon (Koehne) Pilger)–Pine. In Ralska-Jasiewiczowa, M., M. Latałowa, K. Wasylikowa, K. Tobolski, E. Madeyska, H. E. Wright Jr. & C. Turner (eds), Late Glacial and Holocene History of Vegetation in Poland Based on Isopollen Maps. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków: 165–177.Google Scholar
  37. Lauterbach, S., A. Brauer, N. Andersen, D. Danielopol, P. Dulski, M. Hüls, K. Milecka, T. Namiotko, B. Plessen, K. Zamelczyk & U. Von Grafenstein, 2011. Multiproxy evidence for Late glacial to mid-Holocene environmental and climatic changes in northeastern Poland. Boreas 40: 57–72.CrossRefGoogle Scholar
  38. Legendre, P. & P. Legendre, 1998. Numerical Ecology, 2nd English edn. Elsevier Science B.V., Amsterdam.Google Scholar
  39. Litt, T. & M. Stebich, 1999. Bio- and chronostratigraphy of the lateglacial in the Eifel region, Germany. Quaternary International 61: 5–16.CrossRefGoogle Scholar
  40. Litt, T. & K. Tobolski, 1991. Materiały do postglacjalnej historii roślinności okolic Lednogóry. Część I. Badania palinologiczne osadów J. Lednica—rdzeń V/86. In Tobolski, K. (ed.) Wstęp do paleoekologii Lednickiego Parku Krajobrazowego: 57–61.Google Scholar
  41. Litt, T., A. Brauer, T. Goslar, J. Merkt, K. Bałaga, H. Müller, M. Ralska-Jasiewiczowa, M. Stebich & J. F. W. Negendank, 2001. Correlation and synchronisation of Lateglacial continental sequences in northern Central Europe based on annually laminated lacustrine sediments. Quaternary Science Reviews 20: 1233–1249.CrossRefGoogle Scholar
  42. Lotter, A. F., 1991. How long was the Younger Dryas? Preliminary evidence from annually laminated sediments of Soppensee (Switzerland). Hydrobiologia 214: 53–57.CrossRefGoogle Scholar
  43. Makohonienko, M., M. Latałowa, K. Milecka, I. Okuniewska-Nowaczyk & D. Nalepka, 2004. Artemisia L. In Ralska-Jasiewiczowa, M., M. Latałowa, K. Wasylikowa, K. Tobolski, E. Madeyska, H. E. Wright Jr. & C. Turner (eds), Late Glacial and Holocene History of Vegetation in Poland Based on Isopollen Maps. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków: 253–261.Google Scholar
  44. Milecka, K., 2005. Historia jezior lobeliowych zachodniej części Borów Tucholskich na tle postglacjalnego rozwoju szaty leśnej. Wydawnictwo Naukowe UAM, Poznań.Google Scholar
  45. Milecka, K. & K. Szeroczyńska, 2005. Changes in macrophytic flora and planktonic organisms in lake Ostrowite, Poland, as a response of climatic and trophy fluctuations. The Holocene 15: 74–84.CrossRefGoogle Scholar
  46. Miotk-Szpiganowicz, G., 1992. The history of the vegetation of Bory Tucholskie and the role of man in the light of palynological investigation. Acta Palaeobotanica 32: 39–122.Google Scholar
  47. Noryśkiewicz, B., A. Filbrandt-Czaja, A. M. Noryśkiewicz & D. Nalepka, 2004. Helianthemum Mill. – rock-rose. In Ralska-Jasiewiczowa, M., M. Latałowa, K. Wasylikowa, K. Tobolski, E. Madeyska, H. E. Wright Jr. & C. Turner (eds), Late Glacial and Holocene History of Vegetation in Poland Based on Isopollen Maps. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków: 305–308.Google Scholar
  48. Økland, K. A. & J. Økland, 2001. Freshwater bryozoans (Bryozoa) of Norway II: distribution and ecology of two species of Fredericella. Hydrobiologia 459: 103–123.CrossRefGoogle Scholar
  49. Okuniewska-Nowaczyk, I., M. Makohonienko, M. Latałowa, K. Milecka, K. M. Krupiński & D. Nalepka, 2004. Juniperus communis L. – juniper. In Ralska-Jasiewiczowa, M., M. Latałowa, K. Wasylikowa, K. Tobolski, E. Madeyska, H. E. Wright Jr. & C. Turner (eds), Late Glacial and Holocene History of Vegetation in Poland Based on Isopollen Maps. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków: 125–133.Google Scholar
  50. Ralska-Jasiewiczowa, M. & M. Latałowa, 1996. Synthesis of palaeoecological events in Poland. In Berglund, B. E., H. J. B. Birks, M. Ralska-Jasiewiczowa & H. E. Wright (eds), Palaeoecological Events in Europe During the Last 15000 Years – Patterns, Processes and Problems. Wiley, Chichester: 403–472.Google Scholar
  51. Ralska-Jasiewiczowa, M., T. Goslar, T. Madeyska & L. Starkel (eds), 1998a. Lake Gościąż, Central Poland. A Monographic Study. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.Google Scholar
  52. Ralska-Jasiewiczowa, M., B. Van Geel & D. Demske, 1998b. Holocene regional vegetation history recorded in the Lake Gościąż sediments. In Ralska-Jasiewiczowa, M., T. Goslar, T. Madeyska & L. Starkel (eds), Lake Gościąż, Central Poland. A Monographic Study. Szafer Institute of Botany. Polish Academy of Sciences, Kraków: 202–219.Google Scholar
  53. Ralska-Jasiewiczowa, M., D. Demske & B. Van Geel, 1998c. Late-glacial vegetation history recorded in the Lake Gościąż sediments. In Ralska-Jasiewiczowa, M., T. Goslar, T. Madeyska & L. Starkel (eds), Lake Gościąż, Central Poland. W. Szafer Institute of Botany, Kraków: 128–143.Google Scholar
  54. Ralska-Jasiewiczowa, M., M. Latałowa, K. Wasylikowa, K. Tobolski, E. Madeyska, H. E. Wright & C. Turner (eds), 2004. Late Glacial and Holocene History of Vegetation in Poland Based on Isopollen Maps. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.Google Scholar
  55. Rasmussen, S. O., B. M. Vinther, H. B. Clausen & K. K. Andersen, 2007. Early Holocene climate oscillations recorded in three Greenland ice cores. Quaternary Science Reviews 26: 1907–1914.CrossRefGoogle Scholar
  56. Saarnisto, M. & T. Saarinen, 2001. Deglaciation chronology of the Scandinavian Ice Sweet from the Lake Onega Basin to the Salpausselkä End Moraines. Global and Planetary Change 31: 387–405.CrossRefGoogle Scholar
  57. Sarmaja-Korjonen, K., M. Nyman, S. Kultti & M. Valiranta, 2006. Paleolimnological development of Lake Njargajarvi, northern Finnish Lapland, in a changing Holocene climate and environment. Journal of Paleolimnology 35: 65–81.CrossRefGoogle Scholar
  58. Seppä, H., D. Hammarlund & K. Antonsson, 2005. Low-frequency and high-frequency changes in temperature and effective humidity during the Holocene in south-central Sweden: implications for atmospheric and oceanic forcings of climate. Climate Dynamics 25: 285–297.CrossRefGoogle Scholar
  59. Subetto, D. A., B. Wohlfarth, N. Davydova, T. V. Sapelko, L. Björkman, N. Sołvieva, S. Vastegärd, G. Possnert & V. I. Khomutova, 2002. Climate and environment on the Karelian Isthmus, northwestern Russia, 13000–9000 cal yrs BP. Boreas 31: 1–19.CrossRefGoogle Scholar
  60. Szafer, W., 1972. Podstawy geobotanicznego podziału Polski. In Szafer, W. (ed.), Szata roślinna Polski. PWN, Warszawa II.Google Scholar
  61. Szeroczyńska, K., 1985. Cladocera jako wskaźnik ekologiczny w późnoczwartorzędowych osadach jeziornych Polski Północnej. Acta Palaeontologica Polonica 30(1–2): 3–69.Google Scholar
  62. Szeroczyńska, K., 1998a. The Holocene cladoceran succession in the laminated sediments of Lake Gościąż. In Ralska-Jasiewiczowi, M., T. Goslar, T. Madeyska & L. Starkel (eds), Lake Gościąż, Central Poland. A Monographic Study. Szafer Institute of Botany, Polish Academy of Sciences, Kraków: 219–225.Google Scholar
  63. Szeroczyńska, K., 1998b. Cladocera (Crustacea) as information source in studies of lake sediments. Studia Geologica Polonica 112: 9–28.Google Scholar
  64. Szeroczyńska, K. & K. Sarmaja-Korjonen, 2007. Atlas of Subfossil Cladocera from Central and Northern Europe. Friends of the Lower Vistula Society, Świecie.Google Scholar
  65. Szeroczyńska, K., A. Tatur, J. Weckstrom, M. Gąsiorowski, A. M. Noryśkiewicz & E. Sienkiewicz, 2007. Holocene environmental history in northwest Finnish Lapland reflected in the multi-proxy record of small subarctic lake. Journal of Paleolimnology 38: 25–47.CrossRefGoogle Scholar
  66. Timm, H., T. Möls & T. Timm, 2006. Effects of long-term non-point eutrophication on the abundance and biomass of macrozoobenthos in small lakes of Estonia. Proceedings of Estonian Academy of Sciences, Biology and Ecology 55: 187–198.Google Scholar
  67. Tinner, W. & A. F. Lotter, 2001. Central European vegetation response to abrupt climate change at 8.2 ka Geology 29: 551–554.Google Scholar
  68. Tobolski, K., 2000. Przewodnik do oznaczania torfów i osadów jeziornych. PWN, Warszawa.Google Scholar
  69. Troels-Smith, J., 1955a. Karakterisering af løse jordarter (Characterization of unconsolidated sediments). Danmark Geologiska Undersøgelse, IV 3: 1–73.Google Scholar
  70. Troels-Smith, J., 1955b. Karakteriserung af lose jordater. Danmarks Geologiske Undersogelse, 4 3(10): 1–73.Google Scholar
  71. Van der Linden, M. & B. van Geel, 2006. Late Holocene climate change and human impact recorded in a south Swedish ombrotrophic peat bog. Palaeogeography, Palaeoclimatology, Palaeoecology 240: 649–667.CrossRefGoogle Scholar
  72. Von Grafenstein, U., H. Erlenkeuser, A. Brauer, J. Jouzel & S. J. Johnsen, 1999. A mid-European decadal isotope-climate record from 15,500 to 5000 years BP. Science 284: 1654–1657.CrossRefGoogle Scholar
  73. Wacnik, A., 2003. Późnoglacjalne I wczesnoholoceńskie przemiany szaty roślinnej na podstawie analizy pyłkowej osadów laminowanych Jeziora Miłkowskiego na Pojezierzu Mazurskim. Ph.D. Thesis, W. Szafer Institute of Botany, Polish Academy of Science, Kraków.Google Scholar
  74. Walanus, A. & D. Nalepka, 2010. Calibration of Mangerud’s boundaries. Radiocarbon 52(4): 1639–1644.Google Scholar
  75. White, W. B. & R. G. Peterson, 1996. An Antarctic circumpolar wave in surface pressure, wind, temperature and sea-ice extent. Nature 380: 699–702.CrossRefGoogle Scholar
  76. Więckowski, K., 1970. New type of lightweight piston core sample. Bulletin de l’Académie Polonaise des Sciences, Série des Sciences Géologique et Géographique 18(1): 57–62.Google Scholar
  77. Więckowski, K., 2009. Zagadnienia genezy, wieku i ewolucji jezior poszczególnych regionów Polski w świetle badań ich osadów dennych. Studia Limnologica et Telmatologica, Supp. 1: 29–72.Google Scholar
  78. Wohlfarth, B., T. Lacourse, O. Bennike, D. Subetto, P. Tarasov, I. Demidov, L. Filimonova & T. Sapelko, 2007. Climatic and environmental changes in northwestern Russia between 15, 000 and 8000 cal yr BP: a review. Quaternary Science Reviews 26: 1871–1883.CrossRefGoogle Scholar
  79. Woś, A., 2010. Klimat Polski w drugiej połowie XX wieku. Wydawnictwo Naukowe UAM, Poznań.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Krystyna Milecka
    • 1
  • Grzegorz Kowalewski
    • 1
  • Krystyna Szeroczyńska
    • 2
  1. 1.Department of Biogeography and PaleoecologyAdam Mickiewicz UniversityPoznanPoland
  2. 2.Institute of Geological SciencesPolish Academy of SciencesWarsawPoland

Personalised recommendations