, Volume 685, Issue 1, pp 27–47 | Cite as

Habitat complexity in aquatic systems: fractals and beyond

  • M. Tokeshi
  • S. Arakaki


Despite the intensity with which ecological information involving habitat complexity has been amassed to date, much remains to be revealed for a comprehensive understanding of the mechanics and implications of the structural complexity of habitats and its influences on ecological communities. This review examines the multi-faceted characteristics of habitat complexity, focusing in particular on aquatic ecosystems. Habitat complexity in aquatic systems is characterised by at least five different traits of physical structure: (1) spatial scales, (2) diversity of complexity-generating physical (structural) elements, (3) spatial arrangement of elements, (4) sizes of elements, (5) abundance/density of elements. Of these five traits, the concept of fractal dimension fully encompasses only the last one; in this sense, habitat complexity is more complex than what fractal measures represent. It is therefore important to investigate exactly which traits of habitat structure are exerting influences on organisms/communities. We hypothesise that, where an entire range of possible fractal dimension D is considered, intermediate levels of D are most likely to be associated with the highest level of biodiversity, to which the body size spectra of assemblages would have a close bearing. In most aquatic ecosystems, broadly two-dimensional structures of bottom substrate at the scale of 1–10 m mean that the addition of vertical, three dimensional structures almost always implies an increase in both the ‘diversity’ and ‘abundance’ components of structural elements, resulting in more habitats being made available to organisms of different sizes and functional designs. The conservation and management of aquatic ecosystems would be facilitated by rigorous assessments of linkages between habitat complexity and aquatic communities, for which an integrative approach to habitat complexity seems to offer a useful and versatile framework.


Diversity Abundance Substrates Structural elements Fractal dimension Body size 



Thanks are due to Drs Nojima, Yoko-o, Kurimoto and other (past) members of the AMBL-Kyushu University for various forms of assistance. This work was financially supported by the Kyushu University P & P program, the GCOE program (Centre of excellence for Asian conservation ecology as a basis of human-nature mutualism) of the Ministry of Education, Culture, Sports, Science and Technology and the scientific research grants from the Japan Society for the Promotion of Science.


  1. Adami, C., 2002. What is complexity? BioEssays 24: 1085–1094.PubMedCrossRefGoogle Scholar
  2. Adami, C., 2004. Information theory in molecular biology. Physics of Life Reviews 1: 3–22.CrossRefGoogle Scholar
  3. Adami, C. & N. J. Cerf, 2000. Physical complexity of symbolic sequences. Physica D 137: 62–69.CrossRefGoogle Scholar
  4. Adami, C., C. Ofria & T. C. Collier, 2000. Evolution of biological complexity. Proceedings of the National Academy of Sciences USA 97: 4463–4468.CrossRefGoogle Scholar
  5. Arakaki, S. & M. Tokeshi, 2005. Microhabitat selection in intertidal gobiid fishes: species and size-associated interaction. Marine Biology Research 1: 39–47.CrossRefGoogle Scholar
  6. Arakaki, S. & M. Tokeshi, 2011. Analysis of spatial niche structure in coexisting tidepool fishes: null models based on multi-scale experiments. Journal of Animal Ecology 80: 137–147.PubMedCrossRefGoogle Scholar
  7. Attrill, M. J., J. A. Strong & A. A. Rowden, 2000. Are macroinvertebrate communities influenced by seagrass structural complexity? Ecography 23: 114–121.CrossRefGoogle Scholar
  8. August, P. V., 1983. The role of habitat complexity and heterogeneity in structuring tropical mammal communities. Ecology 64: 1495–1507.CrossRefGoogle Scholar
  9. Bell, S. S. & L. D. Coen, 1982. Investigations on epibenthic meiofauna I. Abundances on and repopulation of the tube-caps of Diopatra cuprea (Polychaeta: Onuphidae) in a subtropical system. Marine Biology 67: 303–309.CrossRefGoogle Scholar
  10. Bell, S. S., E. D. McCoy & H. R. Mushinsky, 1991. Habitat Structure: The Physical Arrangement of Objects in Space. Chapman & Hall, London.Google Scholar
  11. Bohnsack, J. A., 1991. Habitat structure and the design of artificial reefs. In Bell, S. S., E. D. McCoy & H. R. Mushinsky (eds), Habitat Structure: The Physical Arrangement of Objects in Space. Chapman & Hall, London: 412–426.Google Scholar
  12. Bonner, J. T., 1988. The Evolution of Complexity. Princeton University Press, Princeton.Google Scholar
  13. Boström, C., E. L. Jackson & C. A. Simenstad, 2006. Seagrass landscapes and their effects on associated fauna: a review. Estuarine, Coastal and Shelf Science 68: 383–403.CrossRefGoogle Scholar
  14. Bruno, J. F. & M. D. Bertness, 2001. Habitat modification and facilitation in benthic marine communities. In Bertness, M. D., S. D. Gaines & M. E. Hay (eds), Marine Community Ecology. Sinauer, Sunderland, MA: 201–218.Google Scholar
  15. Carter, R. W. G., 1988. Coastal Environments. Academic Press, London.Google Scholar
  16. Commito, J. A. & B. R. Rusignuolo, 2000. Structural complexity in mussel beds: the fractal geometry of surface topography. Journal of Experimental Biology and Ecology 255: 133–152.CrossRefGoogle Scholar
  17. Denny, M. & D. Wethey, 2001. Physical processes that generate patterns in marine communities. In Bertness, M. D., S. D. Gaines & M. E. Hay (eds), Marine Community Ecology. Sinauer, Sunderland, MA: 3–37.Google Scholar
  18. Donohue, I. & K. Irvine, 2003. Effects of sediment particle size composition on survivorship of benthic invertebrates from Lake Tanganyika, Africa. Archiv für Hydrobiologie 157: 131–144.CrossRefGoogle Scholar
  19. Downes, B. J., P. S. Lake, E. S. G. Schreiber & A. Glaister, 1998. Habitat structure and regulation of local species diversity in a stony, upland stream. Ecological Monographs 68: 237–257.CrossRefGoogle Scholar
  20. Downes, B. J., P. S. Lake, E. S. G. Schreiber & A. Glaister, 2000. Habitat structure, resources and diversity: the separate effects of surface roughness and macroalgae on stream invertebrates. Oecologia 123: 569–581.CrossRefGoogle Scholar
  21. Dudley, T. L., 1988. The role of plant complexity and epiphyton in colonization of macrophytes by stream insects. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 23: 1153–1158.Google Scholar
  22. Etter, R. J. & J. F. Grassle, 1992. Patterns of species diversity in the deep sea as a function of sediment particle size diversity. Nature 360: 576–578.CrossRefGoogle Scholar
  23. Fortin, M.-J. & M. Dale, 2005. Spatial Analysis. Cambridge University Press, Cambridge.Google Scholar
  24. Frost, N. J., M. T. Burrows, M. P. Johnson, M. E. Hanley & S. J. Hawkins, 2005. Measuring surface complexity in ecological studies. Limnology and Oceanography: Methods 3: 203–210.CrossRefGoogle Scholar
  25. Gee, J. M. & R. M. Warwick, 1994. Metazoan community structure in relation to the fractal dimensions of marine macroalgae. Marine Ecology Progress Series 103: 141–150.CrossRefGoogle Scholar
  26. Gell-Mann, M. & S. Lloyd, 1996. Information measures, effective complexity, and total information. Complexity 2: 44–52.CrossRefGoogle Scholar
  27. Gratwicke, B. & M. R. Speight, 2005. Effects of habitat complexity on Caribbean marine fish assemblages. Marine Ecology Progress Series 292: 301–310.CrossRefGoogle Scholar
  28. Halley, J. M., S. Hartley, A. S. Kallimanis, W. E. Kunin, J. J. Lennon & S. P. Sgardelis, 2004. Uses and abuses of fractal methodology in ecology. Ecology Letters 7: 254–271.CrossRefGoogle Scholar
  29. Hansen, J. P., J. Sagerman & S. A. Wilkström, 2010. Effects of plant morphology on small-scale distribution of invertebrates. Marine Biology 157: 2143–2155.CrossRefGoogle Scholar
  30. Heck, K. L. & R. J. Orth, 1980. Seagrass habitats: the roles of habitat complexity, competition, and predation in structuring associated fish and motile macroinvertebrate assemblages. In Kennedy, V. S. (ed.), Estuarine Perspectives. Academic Press, New York: 449–464.Google Scholar
  31. Heck, K. L. Jr., & G. S. Wetstone, 1977. Habitat complexity and invertebrate species richness and abundance in tropical seagrass meadows. Journal of Biogeography 4: 135–142.CrossRefGoogle Scholar
  32. Hills, J. M., J. C. Thomason & J. Muhl, 1999. Settlement of barnacle larvae is governed by Euclidean and not fractal surface characteristics. Functional Ecology 13: 868–875.CrossRefGoogle Scholar
  33. Hughes, R. N. & R. S. K. Barnes, 1999. An Introduction to Marine Ecology. Wiley-Blackwell, Oxford.Google Scholar
  34. Hurlbert, A. H., 2004. Species–energy relationships and habitat complexity in bird communities. Ecology Letters 7: 714–720.CrossRefGoogle Scholar
  35. Jeffries, M., 1993. Invertebrate colonization of artificial pondweeds of differing fractal dimension. Oikos 67: 142–148.CrossRefGoogle Scholar
  36. Jia, X. H., X. R. Li, J. G. Zhang & Z. S. Zhang, 2009. Analysis of spatial variability of the fractal dimension of soil particle size in Ammopiptanthus mongolicus’ desert habitat. Environmental Geology 58: 953–962.CrossRefGoogle Scholar
  37. Johnson, M. P., N. J. Frost, M. W. J. Mosley, M. F. Roberts & S. J. Hawkins, 2003. The area-independent effects of habitat complexity on biodiversity vary between regions. Ecology Letters 6: 126–132.CrossRefGoogle Scholar
  38. Kawai, T. & M. Tokeshi, 2004. Variable modes of facilitation in the upper intertidal: goose barnacles and mussels. Marine Ecology Progress Series 272: 203–213.CrossRefGoogle Scholar
  39. Koivisto, M. E. & M. Westerbom, 2010. Habitat structure and complexity as determinants of biodiversity in blue mussel beds on sublittoral rocky shores. Marine Biology 157: 1463–1474.CrossRefGoogle Scholar
  40. Kostylev, V. E., J. Erlandsson, Y. M. Mak & G. A. Williams, 2005. The relative importance of habitat complexity and surface area in assessing biodiversity: fractal application on rocky shores. Ecological Complexity 2: 272–286.CrossRefGoogle Scholar
  41. Kurimoto, M. & M. Tokeshi, 2010. Variation on a theme of herbivory: Corallina-hermit crab relationship on a temperate-subtropical rocky shore. Oikos 119: 1401–1408.CrossRefGoogle Scholar
  42. Lassau, S. A. & D. F. Hochuli, 2004. Effects of habitat complexity on ant assemblages. Ecography 27: 157–164.CrossRefGoogle Scholar
  43. Lassau, S. A., G. Cassis, P. K. J. Flemons, L. Wilkie & D. F. Hochuli, 2005. Using high-resolution multi-spectral imagery to estimate habitat complexity in open-canopy forests: can we predict ant community patterns? Ecography 28: 495–504.CrossRefGoogle Scholar
  44. Li, B. L., 2000. Fractal geometry applications in description and analysis of patch patterns and patch dynamics. Ecological Modelling 132: 33–50.CrossRefGoogle Scholar
  45. Lingo, M. E. & S. T. Szedlmayer, 2006. The influence of habitat complexity on reef fish communities in the northeastern Gulf of Mexico. Environmental Biology of Fishes 76: 71–80.CrossRefGoogle Scholar
  46. Londoño-Cruz, E. & M. Tokeshi, 2007. Testing scale-variance in species-area and abundance-area relationships in a local assemblage: an example from a subtropical boulder shore. Population Ecology 49: 275–285.CrossRefGoogle Scholar
  47. Macan, T. T. & A. Kitching, 1972. Some experiments with artificial substrata. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 18: 213–220.Google Scholar
  48. MacArthur, R. H. & J. W. MacArthur, 1961. On bird species diversity. Ecology 42: 594–598.CrossRefGoogle Scholar
  49. Magurran, A. E., 2004. Measuring Biological Diversity. Wiley-Blackwell, Oxford.Google Scholar
  50. Mandelbrot, B. B., 1982. The Fractal Geometry of Nature. W. H. Freeman, San Francisco.Google Scholar
  51. Mann, K. H. & J. R. N. Lazier, 1996. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. Blackwell Science, Cambridge, MA.Google Scholar
  52. Marquet, P. A., S. A. Navarette & J. C. Castilla, 1990. Scaling population density to body size in rocky intertidal communities. Science 250: 1125–1127.PubMedCrossRefGoogle Scholar
  53. McCoy, E. D. & S. S. Bell, 1991. Habitat structure: the evolution and diversification of a complex topic. In Bell, S. S., E. D. McCoy & H. R. Mushinsky (eds), Habitat Structure: The Physical Arrangement of Objects in Space. Chapman & Hall, London: 3–27.Google Scholar
  54. McLachlan, A., 1996. Physical factors in benthic ecology: effects of changing sand particle size on beach fauna. Marine Ecology Progress Series 131: 205–217.CrossRefGoogle Scholar
  55. McShea, D. W., 1996. Metazoan complexity and evolution: is there a trend? Evolution 50: 477–492.CrossRefGoogle Scholar
  56. McShea, D. W., 2000. Functional complexity in organisms: parts as proxies. Biology and Philosophy 15: 641–668.CrossRefGoogle Scholar
  57. Moore, E. C. & K. A. Hovel, 2010. Relative influence of habitat complexity and proximity to patch edges on seagrass epifaunal communities. Oikos 119: 1299–1311.CrossRefGoogle Scholar
  58. Morse, D. R., J. H. Lawton, M. M. Dodson & M. H. Williamson, 1985. Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature 314: 731–733.CrossRefGoogle Scholar
  59. Nohren, E. & E. Odelgard, 2010. Response of epibenthic faunal assemblages to varying vegetation structures and habitat patch size. Aquatic Biology 2: 139–148.CrossRefGoogle Scholar
  60. Nozawa, Y., M. Tokeshi & S. Nojima, 2008. Structure and dynamics of a high-latitude scleractinian coral community in Amakusa, southwestern Japan. Marine Ecology Progress Series 358: 151–160.CrossRefGoogle Scholar
  61. O’Connor, N. A., 1991. The effects of habitat complexity on the macroinvertebrate colonizing wood substrates in lowland stream. Oecologia 75: 132–140.Google Scholar
  62. Ota, N. & M. Tokeshi, 2000. A comparative study of feeding and growth in two coexisting species of carnivorous gastropods. Marine Biology 136: 101–114.CrossRefGoogle Scholar
  63. Palmer, M. W., 1992. The coexistence of species in fractal landscapes. American Naturalist 139: 375–397.CrossRefGoogle Scholar
  64. Paruntu, C. P. & M. Tokeshi, 2003. Variability in the reproductive characteristics of local populatiopns of an intertidal gastropod, Nerita japonica (Dunker). Benthos Research 58: 7–14.Google Scholar
  65. Rae, J. G., 2004. The colonization response of lotic chironomid larvae to substrate size and heterogeneity. Hydrobiologia 524: 115–124.CrossRefGoogle Scholar
  66. Rennie, M. D. & L. J. Jackson, 2005. The influence of habitat complexity on littoral invertebrate distributions: patterns differ in shallow prairie lakes with and without fish. Canadian Journal of Fisheries and Aquatic Sciences 62: 2088–2099.CrossRefGoogle Scholar
  67. Rooke, J. B., 1986. Macroinvertebrates associated with macrophytes and plastic imitations in the Erasoma River, Ontario, Canada. Archiv für Hydrobiologie 106: 307–325.Google Scholar
  68. Safriel, U. N. & M. N. Ben-Eliahu, 1991. Habitat structure: the evolution and diversification of a complex topic. In Bell, S. S., E. D. McCoy & H. R. Mushinsky (eds), Habitat Structure: The Physical Arrangement of Objects in Space. Chapman & Hall, London: 349–369.Google Scholar
  69. Schmid, P. E., 2000. Fractal properties of habitat and patch structure in benthic ecosystems. Advances in Ecological Research 30: 339–401.CrossRefGoogle Scholar
  70. Schmid, P. E., M. Tokeshi & J. M. Schmid-Araya, 2000. Relationship between population density and body size in stream communities. Science 289: 1157–1160.CrossRefGoogle Scholar
  71. Sebens, K. P., 1991. Habitat structure and community dynamics in marine benthic systems. In Bell, S. S., E. D. McCoy & H. R. Mushinsky (eds), Habitat Structure: The Physical Arrangement of Objects in Space. Chapman & Hall, London: 211–234.Google Scholar
  72. Shumway, C. A., H. A. Hofmann & A. P. Dobberfuhl, 2007. Quantifying habitat complexity in aquatic ecosystems. Freshwater Biology 52: 1065–1076.CrossRefGoogle Scholar
  73. Sozska, G. J., 1975. Ecological relations between invertebrates and submerged macrophytes in the lake littoral. Ekologica polska 23: 393–415.Google Scholar
  74. Sugihara, G. & R. M. May, 1990. Applications of fractals in ecology. Trends in Ecology & Evolution 5: 79–86.CrossRefGoogle Scholar
  75. Takemon, Y., 1996. Management of biodiversity in aquatic ecosystems: dynamic aspects of habitat complexity in stream ecosystems. In Abe, T., S. Levin & M. Higashi (eds), Ecological Perspective of Biodiversity. Springer-Verlag, New York: 259–275.Google Scholar
  76. Taniguchi, H. & M. Tokeshi, 2004. Effects of habitat complexity on benthic assemblages in a variable environment. Freshwater Biology 49: 1164–1178.CrossRefGoogle Scholar
  77. Taniguchi, H., S. Nakano & M. Tokeshi, 2003. Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshwater Biology 48: 718–728.CrossRefGoogle Scholar
  78. Thistle, M. E., D. S. Schneider, R. S. Gregory & N. J. Wells, 2010. Fractal measures of habitat structure: maximum densities of juvenile cod occur at intermediate eelgrass complexity. Marine Ecology Progress Series 405: 39–56.CrossRefGoogle Scholar
  79. Thomaz, S. M., E. D. Dibble, L. R. Evangelista, J. Higuti & L. M. Bini, 2008. Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biology 53: 358–367.Google Scholar
  80. Thrush, S. F., J. E. Hewitt, G. A. Funnell, V. J. Cummings, J. Ellis, D. Schultz, D. Talley & A. Norkko, 2001. Fishing disturbance and marine biodiversity: the role of habitat structure in simple soft-sediment systems. Marine Ecology Progress Series 223: 277–286.CrossRefGoogle Scholar
  81. Tokeshi, M., 1993. Species abundance patterns and community structure. Advances in Ecological Research 24: 111–186.CrossRefGoogle Scholar
  82. Tokeshi, M., 1995. Polychaete abundance and dispersion patterns: a non-trivial ‘infaunal’ assemblage on the Pacific South American rocky shore. Marine Ecology Progress Series 125: 137–147.CrossRefGoogle Scholar
  83. Tokeshi, M., 1999. Species Coexistence: Ecological and Evolutionary Perspectives. Blackwell Science, Oxford.Google Scholar
  84. Tokeshi, M. & L. C. V. Pinder, 1985. Microhabitats of stream invertebrates on two submersed macrophytes with contrasting leaf morphology. Holarctic Ecology 8: 313–319.Google Scholar
  85. Tokeshi, M. & L. Romero, 1995. Filling a gap: dynamics of space occupancy on a mussel-dominated subtropical rocky shore. Marine Ecology Progress Series 119: 167–176.CrossRefGoogle Scholar
  86. Tokeshi, M. & K. Tanaka, 2010. Dominance of tabular Acroporid species and the abundance of echinoid grazers in high-latitude coral assemblages of Amakusa, southwestern Japan. Galaxea 12: 87.Google Scholar
  87. Ward, R. & M. Robinson, 1999. Principles of Hydrology. McGraw-Hill, Maidenhead.Google Scholar
  88. Wilkström, S. A. & L. Kautsky, 2007. Structure and diversity of invertebrate communities in the presence and absence of canopy-forming Fucus vesiculosus in the Baltic Sea. Estuarine, Coastal and Shelf Science 72: 168–176.CrossRefGoogle Scholar
  89. Williams, S. L. & K. L. Heck Jr., 2001. Seagrass community ecology. In Bertness, M. D., S. D. Gaines & M. E. Hay (eds), Marine Community Ecology. Sinauer, Sunderland: 317–337.Google Scholar
  90. Witman, J. D. & P. K. Dayton, 2001. Rocky subtidal communities. In Bertness, M. D., S. D. Gaines & M. E. Hay (eds), Marine Community Ecology. Sinauer, Sunderland: 339–366.Google Scholar
  91. Zajac, R. N., 2008. Macrobenthic biodiversity and sea floor landscape structure. Journal of Experimental Biology and Ecology 366: 198–203.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.AMBL-Kyushu UniversityKumamotoJapan

Personalised recommendations