Skip to main content
Log in

Phenotypic variability in the Caribbean Orange Icing sponge Mycale laevis (Demospongiae: Poecilosclerida)

  • SPONGE RESEARCH DEVELOPMENTS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Sponge species may present several morphotypes, but sponges that are morphologically similar can be separate species. We investigated morphological variation in Mycale laevis, a common Caribbean reef sponge. Four morphotypes of M. laevis have been observed (1) orange, semi-cryptic, (2) orange, massive, (3) white, semi-cryptic, and (4) white, massive. Samples of M. laevis were collected from Key Largo, Florida, the Bahamas Islands, and Bocas del Toro, Panama. Fragments of the 18S and 28S rRNA ribosomal genes were sequenced and subjected to phylogentic analyses together with sequences obtained for 11 other Mycale species and additional sequences retrieved from GenBank. Phylogenetic analyses confirmed that the genus Mycale is monophyletic within the Order Poecilosclerida, although the subgenus Aegogropila is polyphyletic and the subgenus Mycale is paraphyletic. All 4 morphotypes formed a monophyletic group within Mycale, and no genetic differences were observed among them. Spicule lengths did not differ among the 4 morphotypes, but the dominant megasclere in samples collected from Florida and the Bahamas was the strongyle, while those from Panama had subtylostyles. Our data suggest that the 4 morphotypes constitute a single species, but further studies would be necessary to determine whether skeletal variability is due to phentotypic or genotypic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Blanquer, A. & M. J. Uriz, 2007. Cryptic speciation in marine sponges evidenced by mitochondrial and nuclear genes: a phylogenetic approach. Molecular Phylogenetics and Evolution 45: 392–397.

    Article  PubMed  CAS  Google Scholar 

  • Blanquer, A., M. J. Uriz & G. Agell, 2008. Hidden diversity in sympatric sponges: adjusting life-history dynamics to share substrate. Marine Ecology Progress Series 371: 109–115.

    Article  Google Scholar 

  • Chapman, M. G., T. J. Tolhurst, R. J. Murphy & A. J. Underwood, 2010. Complex and inconsistent patterns of variation in benthos, micro-algae and sediment over multiple spatial scales. Marine Ecology Progress Series 398: 33–47.

    Article  CAS  Google Scholar 

  • Chou, L. M., J. Y. Yu & T. L. Loh, 2004. Impacts of sedimentation on soft-bottom benthic communities in the southern islands of Singapore. Hydrobiologia 515: 91–106.

    Article  Google Scholar 

  • Collin, R., M. C. Diaz, J. L. Norenburg, R. M. Rocha, J. A. Sanchez, A. Schulze, M. Schwartz & A. Valdez, 2005. Photographic identification guide to some common marine invertebrates of Bocas Del Toro, Panama. Caribbean Journal of Science 41: 638–707.

    Google Scholar 

  • Corredor, J. E., C. R. Wilkinson, V. P. Vicente, J. M. Morell & E. Otero, 1988. Nitrate release by Caribbean reef sponges. Limnology and Oceanography 33: 114–120.

    Article  CAS  Google Scholar 

  • Diaz, M. C. & K. Rutzler, 2001. Sponges: an essential component of Caribbean coral reefs. Bulletin of Marine Science 69: 535–546.

    Google Scholar 

  • Duran, S. & K. Rützler, 2006. Ecological speciation in a Caribbean marine sponge. Molecular Phylogenetics and Evolution 40: 292–297.

    Article  PubMed  CAS  Google Scholar 

  • Erpenbeck, D., S. Duran, K. Rützler, V. Paul, J. N. A. Hooper & G. Wörheide, 2007. Towards a DNA taxonomy of Caribbean demosponges: a gene tree reconstructed from partial mitochondrial CO1 gene sequences supports previous rDNA phylogenies and provides a new perspective on the systematics of Demospongiae. Journal of the Marine Biological Association of the United Kingdom 87: 1563–1570.

    CAS  Google Scholar 

  • Goreau, T. F. & W. D. Hartman, 1966. Sponge: effect on the form of reef corals. Science 151: 343–344.

    Article  PubMed  CAS  Google Scholar 

  • Guindon, S. & O. Gascuel, 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704.

    Article  PubMed  Google Scholar 

  • Hajdu, E. & K. Rutzler, 1998. Sponges, genus Mycale (Poecilosclerida: Demospongiae: Porifera), from a Caribbean mangrove and comments on subgeneric classification. Proceedings of the Biological Society of Washington 111: 737–773.

    Google Scholar 

  • Hartman, W. D., 1967. Revision of Neofibularia (Porifera, Demospongiae), a genus of toxic sponges from the West Indies and Australia. Postilla 113: 1–41.

    Google Scholar 

  • Henkel, T. P. & J. R. Pawlik, 2005. Habitat use by sponge-dwelling brittlestars. Marine Biology 146: 301–313.

    Article  Google Scholar 

  • Hill, M. S., 1998. Spongivory on Caribbean reefs releases corals from competition with sponges. Oecologia 117: 143–150.

    Article  Google Scholar 

  • Hooper, J., 1985. Character stability, systematic, and affinities between Microcionidae (Poecilosclerida) and Axinellida. In Rützler, K. (ed.), New Perspectives in Sponge Biology. Smithsonian Institution Press, Washington: 284–294.

    Google Scholar 

  • Hooper, J. N. A. & R. Van Soest, 2002. Systema Porifera: A Guide to the Classification of Sponges, Vol. 1. Kluwer Academic, New York.

    Google Scholar 

  • Klautau, M., C. A. M. Russo, C. Lazoski, N. Boury-Esnault, J. P. Thorpe & A. M. Solé-Cava, 1999. Does cosmopolitanism result from overconservative systematics? A case study using the marine sponge Chondrilla nucula. Evolution 53: 1414–1422.

    Article  Google Scholar 

  • Loh, T.-L. & J. R. Pawlik, 2009. Bitten down to size: fish predation determines growth form of the Caribbean coral reef sponge Mycale laevis. Journal of Experimental Marine Biology and Ecology 374: 45–50.

    Article  Google Scholar 

  • López-Legentil, S., P. M. Erwin, T. P. Henkel, T. -L. Loh & J. P. Pawlik, 2010. Phenotypic plasticity in the Caribbean sponge Callyspongia vaginalis (Porifera: Haplosclerida). Scientia Marina 74: 445–453.

    Article  Google Scholar 

  • Maldonado, M., M. Carmona & M. Uriz, 1999. Decline in Mesozoic reef-building sponges explained by silicon limitation. Nature 401: 785–788.

    Article  CAS  Google Scholar 

  • McDonald, J. I., J. N. A. Hooper & K. A. McGuinness, 2002. Environmentally influenced variability in the morphology of Cinachyrella australiensis (Carter 1886) (Porifera: Spirophorida: Tetillidae). Marine and Freshwater Research 53: 79–84.

    Article  Google Scholar 

  • Micheli, F., L. Benedetti-Cecchi, S. Gambaccini, I. Bertocci, C. Borsini, G. C. Osio & F. Romano, 2005. Cascading human impacts, marine protected areas, and the structure of Mediterranean reef assemblages. Ecological Monographs 75: 81–102.

    Article  Google Scholar 

  • Miller, K., B. Alvarez, C. Battershill & P. Northcote, 2001. Genetic, morphological, and chemical divergence in the sponge genus Latrunculia (Porifera: Demospongiae) from New Zealand. Marine Biology 139: 235–250.

    Article  CAS  Google Scholar 

  • Palumbi, S. R., 1986. How body plans limit acclimation: responses of a demosponge to wave force. Ecology 67: 208–214.

    Article  Google Scholar 

  • Pawlik, J. R., B. Chanas, R. J. Toonen & W. Fenical, 1995. Defenses of Caribbean sponges against predatory reef fish: I. Chemical deterrence. Marine Ecology Progress Series 127: 183–194.

    Article  CAS  Google Scholar 

  • Pile, A. J., M. R. Patterson & J. D. Witman, 1996. In situ grazing on plankton <10 μm by the boreal sponge Mycale lingua. Marine Ecology Progress Series 141: 95–102.

    Article  Google Scholar 

  • Posada, D., 2003. Using Modeltest and PAUP* to select a model of nucleotide substitution. In Baxevanis, A. D. D. B. Davison, R. D. M. Page, G. A. Petsko, L. D. Stein, & G. D. Stormo (eds), Current Protocols in Bioinformatics. Wiley, New York: 6.5.1–6.5.14.

  • Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.

    Article  PubMed  CAS  Google Scholar 

  • Randall, J. & W. Hartman, 1968. Sponge-feeding fishes of the West Indies. Marine Biology 1: 216–225.

    Article  Google Scholar 

  • Ronquist, F. & J. P. Huelsenbeck, 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

    Article  PubMed  CAS  Google Scholar 

  • Rozas, J., J. C. Sanchez-DelBarrio, X. Messeguer & R. Rozas, 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, S., D. Roessli & L. Excoffier, 2000. Arlequin ver. 2000. A software for population genetics data analysis. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva, Geneva.

    Google Scholar 

  • Sollas, I., 1908. The inclusion of foreign bodies by sponges, with a description of a new genus and species of Monaxonida. Annals & Magazine of Natural History 1: 395–401.

    Article  Google Scholar 

  • Southwell, M. W., J. B. Weisz, C. S. Martens & N. Lindquist, 2008. In situ fluxes of dissolved inorganic nitrogen from the sponge community on Conch Reef, Key Largo, Florida. Limnology and Oceanography 53: 986–996.

    Article  CAS  Google Scholar 

  • Swofford, D. L., 1998. PAUP*4.0, version b10. Sinuaer, Sunderland, MA.

    Google Scholar 

  • Tamura, K. & M. Nei, 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology & Evolution 10: 512–526.

    CAS  Google Scholar 

  • Tamura, K., J. Dudley, M. Nei & S. Kumar, 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology & Evolution 24: 1596–1599.

    Article  CAS  Google Scholar 

  • Teragawa, C. K., 1986. Particle transport and incorporation during skeleton formation in a keratose sponge: Dysidea etheria. Biological Bulletin 170: 321–334.

    Article  Google Scholar 

  • Van Soest, R. M., 1984. Marine sponges from Curacao and other Caribbean localities. Part III Poecilosclerida. In Hummelinck, P. W. & L. J. Van Der Steen (eds), Studies on the Fauna of Curacao and Other Caribbean Islands No. 199. Foundation for Scientific Research in Surinam and the Netherland Antilles, Utrecht: 1–187.

    Google Scholar 

  • Wilkinson, C., 2008. Status of Coral Reefs of the World: 2008. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre. Townsville, Australia.

    Google Scholar 

  • Williams, E. H. & L. Bunkley-Williams, 1990. The worldwide coral reef bleaching cycle and related sources of coral mortality. Atoll Research Bulletin 335: 1–71.

    Google Scholar 

  • Wulff, J. L., 1997. Parrotfish predation on cryptic sponges of Caribbean coral reefs. Marine Biology 129: 41–52.

    Article  Google Scholar 

  • Wulff, J. L., 2006a. Rapid diversity and abundance decline in a Caribbean coral reef sponge community. Biological Conservation 127: 167–176.

    Article  Google Scholar 

  • Wulff, J. L., 2006b. Sponge systematics by starfish: Predators distinguish cryptic sympatric species of Caribbean Fire Sponges, Tedania ignis and Tedania klausi n. sp. (Demospongiae, Poecilosclerida). Biological Bulletin 211: 83–94.

    Article  PubMed  Google Scholar 

  • Zea, S., 1987. Esponjas del Caribe Colombiano, 1st ed. Catalogo Cientifico, Bogotá.

    Google Scholar 

Download references

Acknowledgments

This research was funded by the National Science Foundation (OCE-0550468, 1029515), NOAA/NURC (NA96RU-0260) and NOAA’s Coral Reef Conservation Program with additional support from the UNCW Brauer Fellowship, the AMNH Lerner-Gray Fund, and the Spanish Government project CTM2010-17755. Sponge collection in Florida was carried out under permit number FKNMS-2007-034. The authors would like to thank members of the Pawlik and Song laboratories, staff of STRI Bocas, crew of R/V Walton-Smith and R/V Cape Hatteras, Z. Jaafar, and J. Vicente for laboratory and field assistance. W. Freshwater helped with phylogenetic analyses. Molecular work was carried out at the UNCW Center for Marine Science DNA Core Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tse-Lynn Loh.

Additional information

Guest editors: M. Maldonado, X. Turon, M. A. Becerro & M. J. Uriz / Ancient animals, new challenges: developments in sponge research

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loh, TL., López-Legentil, S., Song, B. et al. Phenotypic variability in the Caribbean Orange Icing sponge Mycale laevis (Demospongiae: Poecilosclerida). Hydrobiologia 687, 205–217 (2012). https://doi.org/10.1007/s10750-011-0806-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0806-1

Keywords

Navigation