, Volume 687, Issue 1, pp 219–226 | Cite as

Growth and regeneration of the elephant ear sponge Ianthella basta (Porifera)



Sponges are an important component of the benthic community, especially on coral reefs, but demographic data such as growth, recruitment or mortality are notably limited. This study examined the growth of the elephant ear sponge Ianthella basta, the largest and in some areas one of the dominating sponge species on Guam and other pacific reefs. We measured growth rates of the natural population on Guam over the course of one year and identified intra-individual growth patterns. Initial sponge sizes ranged from 200 to 35,000 cm2. Specific growth rates ranged from 0.08 to 6.08 with a mean specific growth rate of 1.43 ± 1.29 (SD) year−1. Furthermore, specific growth decreased with sponge size. The age estimate for the largest sponge (1.7 m height × 9.5 m circumference) was ~8 years. Intra-individual growth was mostly apical. This study demonstrated high growth rates, which has notable implications for environmental assessments, management and potential biomedical applications.


Elephant ear sponge Ianthella basta Porifera Demography Growth 



We like to thank Gitta Rohde, Ciemon F. V. Caballes and the UOG Marine Lab Techs for assistance in the field. This research was in part supported by NIH MBRS SCORE grant S06-GM-44796 to PJS. Comments of two anonymous reviewers improved the manuscript. SR was supported by a fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD).


  1. Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In Petrov, B. N. & F. Csaki (ed.), Proceedings of the 2nd International Symposium on Information Theory. Akademiai Kiado, Budapest: 267–281.Google Scholar
  2. Ayling, A. L., 1983. Growth and regeneration rates in thinly encrusting Demospongiae from temperate waters. Biological Bulletin, Marine Biological Laboratory, Woods Hole 165: 343–352.CrossRefGoogle Scholar
  3. Becerro, M. A., R. W. Thacker, X. Turon, M. J. Uriz & V. J. Paul, 2003. Biogeography of sponge chemical ecology: comparisons of tropical and temperate defenses. Oecologia 135: 91–101.PubMedGoogle Scholar
  4. Bergquist, P. R. & M. Kelly-Borges, 1995. Systematics and biogeography of the genus Ianthella (Demospongiae: Verongida: Ianthellidae) in the South-West Pacific. The Beagle, Records of the Museums and Art Galleries of the Northern Territory 12: 151–176.Google Scholar
  5. Beverton, R. J. H. & S. J. Holt, 1957. On the Dynamics of Exploited Fish Populations. Fisheries Investigations of the Ministry of Agriculture and Fisheries, Food in Great Britain, Series 2, Sea Fish, Vol 19. Facsimile reprint 1993. Chapman & Hall, London.Google Scholar
  6. Brunner, E., H. Ehrlich, P. Schupp, R. Hedrich, S. Hunoldt, M. Kammer, S. Machill, S. Paasch, V. V. Bazhenov, D. V. Kurek, T. Arnold, S. Brockmann, M. Ruhnow & R. Born, 2009. Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta. Journal of Structural Biology 168: 539–547.PubMedCrossRefGoogle Scholar
  7. Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretical Approach. Springer, New York.Google Scholar
  8. Dayton, P. K., G. A. Robilliard, R. T. Paine & L. B. Dayton, 1974. Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecological Monographs 44: 105–128.CrossRefGoogle Scholar
  9. De Caralt, S., M. J. Uriz & R. H. Wifffels, 2008. Grazing, differential size-class dynamics and survival of the Mediterranean sponge Corticium candelabrum. Marine Ecology Progress Series 360: 97–106.CrossRefGoogle Scholar
  10. Diaz, M. C. & K. Rützler, 2001. Sponges: an essential component of Caribbean coral reefs. Bulletin of Marine Science 69: 535–546.Google Scholar
  11. Duckworth, A. R. & C. N. Battershill, 2001. Population dynamics and chemical ecology of New Zealand demospongiae Latrunculia sp nov and Polymastia croceus (Poecilosclerida : Latrunculiidae : Polymastiidae). New Zealand Journal of Marine and Freshwater Research 35: 935–949.CrossRefGoogle Scholar
  12. Duffy, J. E., 1992. Host use patterns and demography in a guild of tropical sponge-dwelling shrimps. Marine Ecology Progress Series 90: 127–138.CrossRefGoogle Scholar
  13. Ebert, T. A., 1980. Estimating parameters in a flexible growth equation, the Richards function. Canadian Journal of Fisheries and Aquatic Sciences 37: 687–692.CrossRefGoogle Scholar
  14. Ehrlich, H., M. Krautter, T. Hanke, P. Simon, C. Knieb, S. Heinemann & H. Worch, 2007a. First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). Journal of Experimental Zoology Part B-Molecular and Developmental Evolution 308B: 473–483.CrossRefGoogle Scholar
  15. Ehrlich, H., M. Maldonado, K. D. Spindler, C. Eckert, T. Hanke, R. Born, C. Goebel, P. Simon, S. Heinemann & H. Worch, 2007b. First evidence of chitin as a component of the skeletal fibers of marine sponges Part I. Verongidae (Demospongia: Porifera). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 308B: 347–356.CrossRefGoogle Scholar
  16. Ehrlich, H., M. Ilan, M. Maldonado, G. Muricy, G. Bavestrello, Z. Kljajic, J. L. Carballo, S. Schiaparelli, A. Ereskovsky, P. Schupp, R. Born, H. Worch, V. V. Bazhenov, D. Kurek, V. Varlamov, D. Vyalikh, K. Kummer, V. V. Sivkov, S. L. Molodtsov, H. Meissner, G. Richter, E. Steck, W. Richter, S. Hunoldt, M. Kammer, S. Paasch, V. Krasokhin, G. Patzke & E. Brunner, 2010a. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin. International Journal of Biological Macromolecules 47: 132–140.PubMedCrossRefGoogle Scholar
  17. Ehrlich, H., E. Steck, M. Ilan, M. Maldonado, G. Muricy, G. Bavestrello, Z. Kljajic, J. L. Carballo, S. Schiaparelli, A. Ereskovsky, P. Schupp, R. Born, H. Worch, V. V. Bazhenov, D. Kurek, V. Varlamov, D. Vyalikh, K. Kummer, V. V. Sivkov, S. L. Molodtsov, H. Meissner, G. Richter, S. Hunoldt, M. Kammer, S. Paasch, V. Krasokhin, G. Patzke, E. Brunner & W. Richter, 2010b. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: Biomimetic potential and applications. International Journal of Biological Macromolecules 47: 141–145.PubMedCrossRefGoogle Scholar
  18. Engel, S. & J. R. Pawlik, 2000. Allelopathic activities of sponge extracts. Marine Ecology-Progress Series 207: 273–281.CrossRefGoogle Scholar
  19. Faulkner, D. J., M. K. Harper, M. G. Haygood, C. E. Salomon & E. W. Schmidt, 2000. Symbiotic bacteria in sponges: sources of bioactive substances. In Fusetani, N. (ed.), Drugs from the Sea. Karger, Basel: 107–119.CrossRefGoogle Scholar
  20. Garrabou, J. & M. Zabala, 2001. Growth dynamics in four mediterranean demosponges. Estuarine, Coastal and Shelf Science 52: 293–303.CrossRefGoogle Scholar
  21. Gompertz, B., 1825. On the nature of the function expressive of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society of London, Series B 115: 513–585.CrossRefGoogle Scholar
  22. Hadas, E., M. Shpigel & M. Ilan, 2009. Particulate organic matter as a food source for a coral reef sponge. Journal of Experimental Biology 212: 3643–3650.PubMedCrossRefGoogle Scholar
  23. Henkel, T. P. & J. R. Pawlik, 2005. Habitat use by sponge-dwelling brittlestars. Marine Biology 146: 301–313.CrossRefGoogle Scholar
  24. Hoppe, W. F., 1988. Growth, regeneration and predation in 3 species of large coral reef sponges. Marine Ecology Progress Series 50: 117–125.CrossRefGoogle Scholar
  25. Hultgren, K. M. & J. E. Duffy, 2010. Sponge host characteristics shape the community structure of their shrimp associates. Marine Ecology Progress Series 407: 1–12.CrossRefGoogle Scholar
  26. Jayakumar, R., D. Menon, K. Manzoor, S. V. Nair & H. Tamura, 2010. Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydrate Polymers 82: 227–232.CrossRefGoogle Scholar
  27. Kelly, M., J. N. A. Hooper, V. Paul, G. Paulay, R. W. M. Van Soest & W. de Weerdt, 2003. Taxonomic inventory of the sponges (Porifera) of the Mariana Islands. Micronesica 35–36: 100–120.Google Scholar
  28. Koopmans, M. & R. H. Wijffels, 2008. Seasonal growth rate of the sponge Haliclona oculata (Demospongiae: Haplosclerida). Marine Biotechnology 10: 502–510.PubMedCrossRefGoogle Scholar
  29. Maeda, Y., R. Jayakumar, H. Nagahama, T. Furuike & H. Tamura, 2008. Synthesis, characterization and bioactivity studies of novel beta-chitin scaffolds for tissue-engineering applications. International Journal of Biological Macromolecules 42: 463–467.PubMedCrossRefGoogle Scholar
  30. McMurray, S. E., J. E. Blum & J. R. Pawlik, 2008. Redwood of the reef: growth and age of the giant barrel sponge Xestospongia muta in the Florida Keys. Marine Biology 155: 159–171.CrossRefGoogle Scholar
  31. McMurray, S. E., T. P. Henkel & J. R. Pawlik, 2010. Demographics of increasing populations of the giant barrel sponge Xestospongia muta in the Florida Keys. Ecology 91: 560–570.PubMedCrossRefGoogle Scholar
  32. Munro, M. H. G., J. W. Blunt, R. J. Lake, M. Litaudon, C. N. Battershill & M. J. Page, 1994. From seabed to sickbed: what are the prospects? In Van Soest, R. W. M., T. Van Kempen & J. Braekman (eds), Sponges in Space and Time. AA Balkema, Rotterdam: 395–400.Google Scholar
  33. Navy, U.S.D.o.t., 2010. Guam and CNMI Military Relocation: EIS, Vol. 4: Aircraft Carrier Berthing.Google Scholar
  34. Paulay, G., L. Kirkendale, G. Lambert & C. Meyer, 2002. Anthropogenic biotic interchange in a coral reef ecosystem: a case study from Guam. Pacific Science 56: 403–422.CrossRefGoogle Scholar
  35. Pauly, D., 1981. The relationships between gill surface area and growth performance in fish: a generalization of von Bertalanffy’s theory of growth. Meeresforschung 28: 251–282.Google Scholar
  36. Pawlik, J. R., 1998. Coral reef sponges: do predatory fishes affect their distribution? Limnology and Oceanography 43: 1396–1399.CrossRefGoogle Scholar
  37. Peters, R. H., 1983. The Ecological Implications of Body Size. Cambridge University Press, Cambridge.Google Scholar
  38. Reiswig, H. M., 1971. In situ pumping activities of tropical Demospongiae. Marine Biology 9: 38–50.CrossRefGoogle Scholar
  39. Reiswig, H. M., 1973. Population dynamics of three Jamaican Demospongiae. Bulletin of Marine Science 23: 191–226.Google Scholar
  40. Richards, F. J., 1959. A flexible growth function for empirical use. Journal of Experimental Botany 10: 290–300.CrossRefGoogle Scholar
  41. Riisgard, H. U. & P. S. Larsen, 2010. Particle capture mechanisms in suspension-feeding invertebrates. Marine Ecology Progress Series 418: 255–293.CrossRefGoogle Scholar
  42. Schmahl, G. P., 1999. Recovery and growth of the giant barrel sponge (Xestospongia muta) following physical injury from a vessel grounding in the Florida Keys. Memoirs of the Queensland Museum 44: 532.Google Scholar
  43. Schupp, P. J., C. Kohlert-Schupp, S. Whitefield, A. Engemann, S. Rohde, T. Hemscheidt, J. M. Pezzuto, T. P. Kondratyuk, E. J. Park, L. Marler, B. Rostama & A. D. Wright, 2009. Cancer chemopreventive and anticancer evaluation of extracts and fractions from marine macro- and micro-organisms collected from twilight zone waters around Guam. Natural Product Communications 4: 1717–1728.PubMedGoogle Scholar
  44. Smith, L. C. & W. H. Hildemann, 1986. Allograft-rejection, autograft fusion and inflammatory responses to injury in Callyspongia diffusa (Porifera, Demospongia). Proceedings of the Royal Society of London, Series B: Biological Sciences 226: 445–464.CrossRefGoogle Scholar
  45. Suchanek, T. H., R. C. Carpenter, J. D. Witman & C. D. Harvell, 1985. Sponges as important space competitors in deep Caribbean coral reef communities. In Reaka, M. L. (ed.), The Ecology of Deep and Shallow Coral Reefs. Symposia Series for Undersea Research. NOAA, Rockville: 55–59.Google Scholar
  46. Tanaka, K., 1982. A new growth curve which expresses infinitive increase. Publications of the Amakusa Marine Biology Laboratory Kyushu University 6: 167–177.Google Scholar
  47. Tanaka, K., 2002. Growth dynamics and mortality of the intertidal encrusting sponge Halichondria okadai (Demospongiae, Halichondrida). Marine Biology 140: 383–389.CrossRefGoogle Scholar
  48. Targett, N. M. & G. P. Schmahl, 1984. Chemical Ecology and Ddistribution of Sponges in the Salt River Canyon, St. Croix, U.S.V.I. NOAA Technical Memorandum OAR NURP-1.Google Scholar
  49. Turon, X., I. Tarjuelo & M. J. Uriz, 1998. Growth dynamics and mortality of the encrusting sponge Crambe crambe (Poecilosclerida) in contrasting habitats: correlation with population structure and investment in defence. Functional Ecology 12: 631–639.CrossRefGoogle Scholar
  50. von Bertalanffy, L., 1938. A quantitative theory of organic growth (inquires on growth laws II). Human Biology 10: 181–213.Google Scholar
  51. Winsor, C., 1932. The Gompertz curve as a new growth curve. Proceedings of the National Academy of Science, USA 18: 1–8.CrossRefGoogle Scholar
  52. Wulff, J. L., 1985. Patterns and processes of size change in Caribbean demosponges of branching morphology. In Rutzler, K. (ed.), New Perspectives in Sponge Biology. Smithsonian Institution Press, Washington: 425–435.Google Scholar
  53. Wulff, J. L., 1997. Parrotfish predation on cryptic sponges of Caribbean coral reefs. Marine Biology 129: 41–52.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl-von-Ossietzky University OldenburgWilhelmshavenGermany
  2. 2.University of Guam Marine LaboratoryMangilao, GuamUSA

Personalised recommendations