Advertisement

Hydrobiologia

, Volume 689, Issue 1, pp 51–61 | Cite as

Biological traits of European pond macroinvertebrates

  • Régis Céréghino
  • Beat Oertli
  • Marcello Bazzanti
  • Cristina Coccia
  • Arthur Compin
  • Jeremy Biggs
  • Nicolas Bressi
  • Patrick Grillas
  • Andrew Hull
  • Thomas Kalettka
  • Olivier Scher
POND RESEARCH AND MANAGEMENT

Abstract

Whilst biological traits of river macroinvertebrates show unimodal responses to geographic changes in habitat conditions in Europe, we still do not know whether spatial turnover of species result in distinct combinations of biological traits for pond macroinvertebrates. Here, we used data on the occurrence of 204 macroinvertebrate taxa in 120 ponds from four biogeographic regions of Europe, to compare their biological traits. The Mediterranean, Atlantic, Alpine, and Continental regions have specific climate, vegetation and geology. Only two taxa were exclusively found in the Alpine and Continental regions, while 28 and 34 taxa were exclusively recorded in the Atlantic and Mediterranean regions, respectively. Invertebrates in the Mediterranean region allocated much energy to reproduction and resistance forms. Most Mediterranean invertebrate species had narrow thermal ranges. In Continental areas, invertebrates allocated lesser energy to reproduction and dispersal, and organisms were short lived with high diversity of feeding groups. These characteristics suggest higher resilience. The main difference between ponds in the Alpine and Atlantic regions was their elevation. Alpine conditions necessitate specific adaptations related to rapid temperature fluctuations, and low nutrient concentrations. Even if our samples did not cover the full range of pond conditions across Europe, our analyses suggest that changes in community composition have important impacts on pond ecosystem functions. Consistent information on a larger set of ponds across Europe would be much needed, but their low accessibility (unpublished data and/or not disclosed by authors) remains problematic. There is still, therefore, a pressing need for the incorporation of high quality data sets into a standardized database so that they can be further analyzed in an integrated European-wide manner.

Keywords

Biogeographic regions Community functions Database Freshwater biodiversity Fuzzy coding 

Notes

Acknowledgments

This work was funded by the MAVA Foundation as part of the Pro-Pond Project. Three anonymous reviewers provided valuable comments on an earlier version of this article.

Supplementary material

10750_2011_744_MOESM1_ESM.doc (468 kb)
Supplementary material 1 (DOC 468 kb)

References

  1. Bazzanti, M., S. Baldoni & M. Seminara, 1996. Invertebrate macrofauna of a temporary pond in Central Italy: composition, community parameters and temporal succession. Archiv für Hydrobiologie 137: 77–94.Google Scholar
  2. Bazzanti, M., V. Della Bella & F. Grezzi, 2009. Functional characteristics of macroinvertebrate communities in Mediterranean ponds (Central Italy): influence of water permanence and mesohabitat type. Annales de Limnologie—International Journal of Limnology 45: 29–39.CrossRefGoogle Scholar
  3. Begon, M., J. L. Harper & C. R. Towsend, 1996. Ecology, 3rd ed. Blackwell Science, Oxford.Google Scholar
  4. Boix, D., J. Sala & R. Moreno-Amich, 2001. The faunal composition of Espolla pond (NE Iberian peninsula): the neglected biodiversity of temporary waters. Wetlands 21: 577–592.CrossRefGoogle Scholar
  5. Bonada, N., M. Rieradevall & N. Prat, 2007. Macroinvertebrate community structure and biological traits related to flow permanence in a mediterranean river network. Hydrobiologia 589: 91–106.CrossRefGoogle Scholar
  6. Cayrou, J., A. Compin, N. Giani & R. Céréghino, 2000. Species associations in lotic macroinvertebrates and their use for river typology. Example of the Adour-Garonne drainage basin (France). Annales de Limnologie—International Journal of Limnology 36: 189–202.CrossRefGoogle Scholar
  7. Céréghino, R., J. Biggs, S. Declerck & B. Oertli, 2008a. The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597: 1–6.CrossRefGoogle Scholar
  8. Céréghino, R., A. Ruggiero, P. Marty & S. Angélibert, 2008b. Influence of vegetation cover on the biological traits of pond invertebrate communities. Annales de Limnologie—International Journal of Limnology 44: 267–274.CrossRefGoogle Scholar
  9. Céréghino, R., A. Ruggiero, P. Marty & S. Angélibert, 2008c. Biodiversity and distribution patterns of freshwater invertebrates in farm ponds of a southwestern French agricultural landscape. Hydrobiologia 597: 43–51.CrossRefGoogle Scholar
  10. Chapman, L. J., J. Balirwa, F. W. B. Bugenyi, C. Chapman & T. L. Crisman, 2001. Wetlands of East-Africa: biodiversity, exploitation and policy perspectives. In Gopal, B., W. J. Junk & J. A. Davis (eds), Biodiversity in Wetlands: Assessment Function and Conservation, Vol. 2. Backhuys Publishers, Leiden, The Netherlands: 101–131.Google Scholar
  11. Chase, J. M. & W. A. Ryberg, 2004. Connectivity, scale-dependence, and the productivity–diversity relationship. Ecology Letters 7: 676–683.CrossRefGoogle Scholar
  12. Chevenet, F., S. Dolédec & D. Chessel, 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology 31: 295–309.CrossRefGoogle Scholar
  13. Davies, B., J. Biggs, P. Williams, M. Whitfield, P. Nicolet, D. Sear, S. Bray & S. Maund, 2008. Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agriculture Ecosystems and Environment 125: 1–8.CrossRefGoogle Scholar
  14. Della Bella, V., M. Bazzanti & F. Chiarotti, 2005. Macroinvertebrate diversity and conservation status of Mediterranean ponds in Italy: water permanence and mesohabitat influence. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 583–600.CrossRefGoogle Scholar
  15. Dolédec, S. & D. Chessel, 1994. Co-inertia analysis: an alternative method for studying species–environmental relationships. Freshwater Biology 31: 277–294.CrossRefGoogle Scholar
  16. Dolédec, S., B. Statzner & V. Frainay, 1998. Accurate description of functional community structure: identifying stream invertebrates to species-level? Bulletin of the North American Benthological Society 15: 154–155.Google Scholar
  17. Dolédec, S., B. Statzner & M. Bournaud, 1999. Species traits for future biomonitoring across ecoregions: patterns along a human-impacted river. Freshwater Biology 42: 737–758.CrossRefGoogle Scholar
  18. Dolédec, S., J. M. Olivier & B. Statzner, 2000. Accurate description of the abundance of taxa and their biological traits in stream invertebrate communities: effects of taxonomic and spatial resolution. Archiv für Hydrobiologie 148: 25–43.Google Scholar
  19. Dolédec, S., N. Phillips, M. R. Scarsbrook & R. H. Riley, 2006. Comparison of structural and functional approaches to determining landuse effects on grassland stream invertebrate communities. Journal of the North American Benthological Society 25: 44–60.CrossRefGoogle Scholar
  20. Dray, S., D. Chessel & J. Thioulouse, 2003. Co-inertia analysis and the linking of ecological data tables. Ecology 84: 3078–3089.CrossRefGoogle Scholar
  21. EEA (European Environment Agency), 2002. Europe’s biodiversity—biogeographical regions and seas. Report No. 1. Free download at http://www.eea.europa.eu/publications/report_2002_0524_154909.
  22. EPCN (European Pond Conservation Network), 2007. Developing the pond manifesto. Annales de Limnologie—International Journal of Limnology 43: 221–232.CrossRefGoogle Scholar
  23. Garcia-Criado, F. & C. Trigal, 2005. Comparison of several techniques for sampling macroinvertebrates in different habitats of a North Iberian pond. Hydrobiologia 545: 103–115.CrossRefGoogle Scholar
  24. Gascon, S., D. Boix, J. Sala & X. D. Quintana, 2008. Relation between macroinvertebrate life strategies and habitat traits in Mediterranean salt marsh ponds (Emporda wetlands, NE Iberian Peninsula). Hydrobiologia 597: 71–83.CrossRefGoogle Scholar
  25. Hansson, L.-A., C. Brönmark, P. A. Nilsson & K. Åbjörnsson, 2005. Conflicting demands on wetland ecosystem services: nutrient retention, biodiversity or both? Freshwater Biology 50: 705–714.CrossRefGoogle Scholar
  26. Hull, A., 1997. The pond life project: a model for conservation and sustainability. In Boothby, J. (ed.), British Pond Landscape, Proceedings from the UK Conference of the Pond Life Project. Pond Life Project, Liverpool: 101–109.Google Scholar
  27. Jeffries, M., 1994. Invertebrate communities and turnover in wetlands ponds affected by drought. Freshwater Biology 32: 603–612.CrossRefGoogle Scholar
  28. Johansson, F., 2003. Latitudinal shifts in body size of Enallagma cyathigerum (Odonata). Journal of Biogeography 30: 29–34.CrossRefGoogle Scholar
  29. Kitching, R. L., 2000. Food webs and container habitats: the natural history and ecology of phytotelmata. Cambridge University Press, UK.CrossRefGoogle Scholar
  30. Oertli, B., D. Auderset-Joye, E. Castella, R. Juge & J. B. Lachavanne, 2000. Diversité biologique et typologie écologique des étangs et petits lacs de Suisse. Univ. Genève, Laboratoire d’Ecologie et de Biologie Aquatique. Report to project 753-BA-1113: 340 pp.Google Scholar
  31. Oertli, B., J. Biggs, R. Céréghino, P. Grillas, P. Joly & J. B. Lachavanne, 2005. Conservation and monitoring of pond biodiversity: introduction. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 535–540.CrossRefGoogle Scholar
  32. Oertli, B., N. Indermuehle, S. Angélibert, H. Hinden & A. Stoll, 2008. Macroinvertebrate assemblages in 25 high alpine ponds of the Swiss National Park (Cirque of Macun) and relation to environmental variables. Hydrobiologia 597: 29–41.CrossRefGoogle Scholar
  33. Oertli, B., R. Céréghino, J. Biggs, S. Declerck, A. Hull & M. R. Miracle, 2010. Pond Conservation in Europe, Developments in Hydrobiology 210. Springer, Berlin: 385 pp.Google Scholar
  34. Pond Action, 1994. The Oxfordshire Pond Survey. A Report to the World Wide Fund for Nature (WWF-UK). Oxford Brookes University, Oxford.Google Scholar
  35. Robert, P. & Y. Escoufier, 1976. A unifying tool for linear multivariate statistical methods: the RV-coefficient. Journal of Applied Statistics 25: 257–265.CrossRefGoogle Scholar
  36. Ruhí, A., D. Boix, J. Sala, S. Gascón & X. D. Quintana, 2009. Spatial and temporal patterns of pioneer macrofauna in recently created ponds: taxonomic and functional approaches. Hydrobiologia 634: 137–151.CrossRefGoogle Scholar
  37. Sahuquillo, M., J. M. Poquet, J. Rueda & M. R. Miracle, 2007. Macroinvertebrate communities in sediment and plants in coastal Mediterranean water bodies (Central Iberian Peninsula). Annales de Limnologie—International Journal of Limnology 43: 117–130.CrossRefGoogle Scholar
  38. Santoul, F., J. Cayrou, S. Mastrorillo & R. Céréghino, 2005. Spatial patterns of the biological traits of freshwater fish communities in S.W. France. Journal of Fish Biology 66: 301–314.CrossRefGoogle Scholar
  39. Schneider, D. W. & T. M. Frost, 1996. Habitat duration and community structure in temporary ponds. Journal of the North American Benthological Society 15: 64–86.CrossRefGoogle Scholar
  40. Southwood, T. R. E., 1988. Tactics, strategies and templets. Oikos 52: 3–18.CrossRefGoogle Scholar
  41. Statzner, B., A. G. Hildrew & V. H. Resh, 2001. Species traits and environmental constraints: entomological research and the history of ecological theory. Annual Review of Entomology 46: 291–316.PubMedCrossRefGoogle Scholar
  42. Statzner, B., S. Dolédec & B. Hugueny, 2004. Biological trait composition of European stream invertebrate communities: assessing the effects of various trait filter types. Ecography 27: 470–488.CrossRefGoogle Scholar
  43. Tachet, H., P. Richoux, M. Bournard & P. Usseglio-Polatera, 2000. Invertébrés d’eau douce. Systématique, biologie, écologie. CNRS Editions, Paris.Google Scholar
  44. Van de Meutter, F., R. Stoks & L. De Meester, 2005. The effect of turbidity state and microhabitat on macroinvertebrate assemblages: a pilot study of six shallow lakes. Hydrobiologia 542: 379–390.Google Scholar
  45. Williams, D. D., 1996. Environmental constraints in temporary freshwaters and their consequences for the insect fauna. Journal of the North American Benthological Society 15: 634–650.CrossRefGoogle Scholar
  46. Williams, P., M. Whitfield, J. Biggs, S. Bray, G. Fox, P. Nicolet & D. Sear, 2004. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biological Conservation 115: 329–341.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Régis Céréghino
    • 1
  • Beat Oertli
    • 2
  • Marcello Bazzanti
    • 3
  • Cristina Coccia
    • 3
    • 4
  • Arthur Compin
    • 1
  • Jeremy Biggs
    • 5
  • Nicolas Bressi
    • 6
  • Patrick Grillas
    • 7
  • Andrew Hull
    • 8
  • Thomas Kalettka
    • 9
  • Olivier Scher
    • 10
  1. 1.EcoLab, Laboratoire Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS-INP-UPSUniversité de ToulouseToulouseFrance
  2. 2.University of Applied Sciences of Western SwitzerlandGenevaSwitzerland
  3. 3.Department of Environmental BiologyUniv. Roma 1RomeItaly
  4. 4.CISCDonanaSpain
  5. 5.Pond Conservation: The Water Habitats TrustOxfordUK
  6. 6.Trieste Natural History MuseumTriesteItaly
  7. 7.Station Biologique de la Tour du ValatLe Sambuc, ArlesFrance
  8. 8.Liverpool John Moores UniversityLiverpoolUK
  9. 9.Centre for Agricultural Landscape ResearchMünchebergGermany
  10. 10.Pôle-relais Mares, Zones Humides intérieures, Vallées AlluvialesParisFrance

Personalised recommendations