, Volume 673, Issue 1, pp 1–11 | Cite as

Effect of temperature on size and shape of silica scales in Synura petersenii and Mallomonas tonsurata (Stramenopiles)

Primary Research Paper


Synurophytes are planktonic protists whose cells are covered with silica scales. According to the temperature-size rule, protists decrease in size with increasing temperature. Here, we showed that inorganic silica scales responded to increasing temperature in the same way as the cells did. Two species, Mallomonas tonsurata and Synura petersenii, were cultivated at five temperature levels (5, 10, 15, 20 and 25°C) and the methods of geometric morphometrics were applied for scale size and shape data analyses. We observed that the shape of the scales was significantly affected by the cultivation temperature. The overall shape change from rounded, circular scales to oval or more elongated scales seemed to be a general feature in synurophytes and may be considered a consequence of rising temperature. Moreover, the difference in shape remained significant even if the effect of size (allometric effect) was separated. Finally, we compared the level of the scales’ morphological variation among all temperature treatments. The results indicated that the cultivation temperature of 25°C negatively affected cellular processes involved in scale biogenesis. The use of the scale shape data has potential in palaeoecological research.


Allometry Disparity Geometric morphometrics Silica scales Synurophyceae Temperature-size rule 



This study was supported by the Czech Ministry of Education, research grant No. 0021620828 and grant No. 206/08/P281 from the Czech Science Foundation.


  1. Andersen, R. A., S. L. Morton & J. P. Sexton, 1997. Provasoli-Guillard National Center for Culture of Marine Phytoplankton 1997. List of strains. Journal of Phycology 33(suppl): 1–75.CrossRefGoogle Scholar
  2. Atkinson, D., 1994. Temperature and organism size—a biological law for ectotherms? Advances in Ecological Research 25: 1–58.CrossRefGoogle Scholar
  3. Atkinson, D., B. J. Ciotti & D. J. S. Montagnes, 2003. Protists decrease in size linearly with temperature: ca. 2.5% °C−l. Proceedings of the Royal Society of London Series B-Biological Sciences 270: 2605–2611.CrossRefGoogle Scholar
  4. Bhatti, S. & B. Colman, 2005. Inorganic carbon acquisition by the chrysophyte alga Mallomonas papillosa. Canadian Journal of Botany 83: 891–897.CrossRefGoogle Scholar
  5. Bhatti, S. & B. Colman, 2008. Inorganic carbon acquisition in some synurophyte algae. Physiologia Plantarum 133: 33–40.PubMedCrossRefGoogle Scholar
  6. Bookstein, F. L., 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge.Google Scholar
  7. Bookstein, F. L., 1997. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Medical Image Analysis 1: 225–243.PubMedCrossRefGoogle Scholar
  8. Černá, K. & J. Neustupa, 2010. The pH-related morphological variations of two acidophilic species of Desmidiales (Viridiplantae) isolated from a lowland peat bog, Czech Republic. Aquatic Ecology 44: 409–419.CrossRefGoogle Scholar
  9. Debat, V., M. Bégin, H. Legout & J. R. David, 2003. Allometric and nonalometric components of Drosophila wing shape respond differently to developmental temperature. Evolution 57: 2773–2784.PubMedGoogle Scholar
  10. Ghalambor, C. K., J. K. McKay, S. P. Carroll & D. N. Reznick, 2007. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology 21: 394–407.CrossRefGoogle Scholar
  11. Grant, J., Y. I. Tekle, O. R. Andersen, D. J. Patterson & L. A. Katz, 2009. Multigene evidence for the placement of a heterotrophic amoeboid lineage Leukarachnion sp. among photosynthetic stramenopiles. Protist 160: 38–376.CrossRefGoogle Scholar
  12. Gutowski, A., 1996. Temperature dependent variability of scales and bristles of Mallomonas tonsurata Teiling emend. Krieger (Synurophyceae). Nova Hedwigia Beiheft 114: 125–146.Google Scholar
  13. Hammer, O., D. A. T. Harper & P. D. Ryan, 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4. (http://folk.uio.no/ohammer/past).
  14. Hillebrand, H., C.-D. Dürselen, D. Kirschel, U. Pollinger & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  15. Janatková, K. & Y. Němcová, 2009. Silica-scaled chrysophytes of Southern Bohemian water bodies, including Mallomonas conspersa Dürrschmidt with occurrence so far reported from Japan and New Zealand. Fottea 9: 93–99.Google Scholar
  16. Jolliffe, I. T., 1986. Principal Component Analysis. Springer, New York.Google Scholar
  17. Kristiansen, J., 1979. Problems in classification and identification of Synuraceae (Chrysophyceae). Schweizerische Zeitschrift für Hydrologie-Swiss Journal of Hydrology 40: 310–319.CrossRefGoogle Scholar
  18. Kristiansen, J. & H. R. Preisig, 2007. Chrysophyte and haptophyte algae. Part 2: Synurophyceae. In Büdel, B., G. Gärtner, L. Krienitz, H. R. Preisig & M. Schagerl (eds), Süsswsserflora von Mitteleuropa 2/2. Springer Verlag, Berlin Heidelberg: 1–252.Google Scholar
  19. Lavau, S. & R. Wetherbee, 1994. Structure an development of the scale case of Mallomonas adamas (Synurophyceae). Protoplasma 181: 259–268.CrossRefGoogle Scholar
  20. Leadbeater, B. S. C. & D. A. N. Barker, 1995. Biomineralization and scale production in the Chrysophyta. In Sandgren, C. D., J. P. Smol & J. Kristiansen (eds), Chrysophyte Algae. Cambridge University Press, Cambridge: 303–329.Google Scholar
  21. Lee, K. L. & H. S. Kim, 2007. G.rowth characteristics of three synurophytes (Mallomonas species) at different temperatures and pH. Nova Hedwigia 84: 227–240.CrossRefGoogle Scholar
  22. Marroig, G., 2007. When size makes a difference: allometry, life-history and morphological evolution of capuchins (Cebus) and squirrels (Saimiri) monkeys (Cebinae, Platyrrhini). BMC Evolutionary Biology 7: 20.PubMedCrossRefGoogle Scholar
  23. Martin-Wagenmann, B. & A. Gutowski, 1995. Scale morphology and growth characteristics of clones of Synura petersenii (Synurophyceae) at different temperatures. In Sandgren, C. D., J. P. Smol & J. Kristiansen (eds), Chrysophyte Algae. Cambridge University Press, Cambridge: 345–360.Google Scholar
  24. Montagnes, D. J. S. & D. J. Franklin, 2001. Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: reconsidering some paradigms. Limnology and Oceanography 46: 2008–2018.CrossRefGoogle Scholar
  25. Němcová, Y., 2010. Diversity and ecology of silica-scaled chrysophytes (Synurophyceae, Chrysophyceae) in the National Nature Monument Swamp and Břehyňský Pond, Czech Republic. Cryptogamie, Algologie 31: 229–243.Google Scholar
  26. Němcová, Y., J. Neustupa, J. Kvíderová & M. Řezáčová-Škaloudová, 2010. Morphological plasticity of silica scales of Synura echinulata (Synurophyceae) in crossed gradients of light and temperature–a geometric morphometric approach. Nova Hedwigia Beiheft 136: 21–32.Google Scholar
  27. Neustupa, J. & L. Hodač, 2005. Changes in shape of the coenobial cells of an experimental strain of Pediastrum duplex var. duplex (Chlorophyta) reared at different pHs. Preslia 77: 439–452.Google Scholar
  28. Neustupa, J. & Y. Němcová, 2007. A geometric morphometric study of the variation in scales of Mallomonas striata (Synurophyceae, Heterokontophyta). Phycologia 46: 123–130.CrossRefGoogle Scholar
  29. Neustupa, J. & M. Řezáčová, 2007. The genus Mallomonas (Mallomonadales, Synurophyceae) in several Southeast Asian urban water bodies – the biogeographic implications. Nova Hedwigia 84: 249–259.CrossRefGoogle Scholar
  30. Neustupa, J., J. Šťastný & L. Hodač, 2008. Temperature-related phenotypic plasticity in the green microalga Micrasterias rotata. Aquatic Microbial Ecology 51: 77–86.CrossRefGoogle Scholar
  31. Neustupa, J., M. Řezáčová-Škaloudová & Y. Němcová, 2010. Shape variation of the silica scales of Mallomonas kalinae (Mallomonadales, Synurophyceae) in relation to their position on the cell body. Nova Hedwigia Beiheft 136: 33–42.Google Scholar
  32. Padisák, J., L. S. Péterfi & L. Momeu, 2000. Silica-scaled chrysophytes from Hungary. Verhandlungen des Internationalen Verein Limnologie 27: 131–134.Google Scholar
  33. Řezáčová-Škaloudová, M., J. Neustupa & Y. Němcová, 2010. Effect of temperature on the variability of silicate structures in Mallomonas kalinae and Synura curtispina (Synurophyceae). Nova Hedwigia Beiheft 136: 55–70.Google Scholar
  34. Rohlf, F. J., 2006. Tps Series. Department of Ecology and Evolution, State University of New York at Stony Brook, New York.Google Scholar
  35. Rojackers, R. M. & H. Kessels, 1986. Ecological characteristics of scale-bearing Chrysophyceae from the Netherlands. Nordic Journal of Botany 6: 373–383.CrossRefGoogle Scholar
  36. Saxby-Rouen, K. J., B. S. C. Leadbeater & C. S. Reynolds, 1997. The growth response of Synura petersenii (Synurophyceae) to photon flux density, temperature and pH. Phycologia 36: 233–243.CrossRefGoogle Scholar
  37. Siver, P. A., 1991. The biology of Mallomonas – morphology, taxonomy and ecology. Kluwer Academic Publishers, London.Google Scholar
  38. Siver, P. A., 1995. The distribution of chrysophytes along environmental gradients: their use as biological indicators. In Sandgren, C. D., J. P. Smol & J. Kristiansen (eds), Chrysophyte Algae. Cambridge University Press, Cambridge: 345–360.Google Scholar
  39. Siver, P. A. & A. Skogstad, 1988. Morphological variation and ecology of Mallomonas crassisquama (Chrysophyceae). Nordic Journal of Botany 8: 99–107.CrossRefGoogle Scholar
  40. Smol, J. P., 1995. Application of chrysophytes to problems in paleoecology. In Sandgren, C. D., J. P. Smol & J. Kristiansen (eds), Chrysophyte algae. Cambridge University Press, Cambridge: 345–360.Google Scholar
  41. Wetherbee, R., M. Ludwig & A. Koutoulis, 1995. Immunological and ultrastructural studies of scale development and deployment in Mallomonas and Apedinella. In Sandgren, C. D., J. P. Smol & J. Kristiansen (eds), Chrysophyte Algae. Cambridge University Press, Cambridge: 345–360.Google Scholar
  42. Zelditch, M. L., D. L. Swiderski, H. D. Sheets & W. L. Fink, 2004. Geometric Morphometrics for Biologist: A Primer. Elsevier Academic Press, New York: 1–443.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Botany, Faculty of ScienceCharles University in PraguePraha 2Czech Republic

Personalised recommendations