, Volume 677, Issue 1, pp 3–14 | Cite as

Jurassic submarine troglobites: is there any link to the recent submarine cave fauna?

  • Roman Aubrecht
  • Ján Schlögl


Recent submarine caves are inhabited by endemic faunas adapted to oligotrophism, darkness and a tranquil environment. Many of their representatives are archaic types of animals resembling fossils from very early times in evolution. This article compares fossil fauna from Jurassic neptunian dykes (originally sea bed clefts) from the Western Carpathians with the Recent cave-dwelling fauna. The ostracods Pokornyopsis feifeli are particularly important. In the Western Carpathians, these were exclusively found in the Middle/Late Jurassic fissure fillings, but in the non-Tethyan Germanic Jurassic this species was found in deep-marine claystones. They are phylogenetic forerunners of the recent genus Danielopolina inhabiting both anchialine caves and deep seas. This indicates a Jurassic migration of deep-marine fauna to cryptic habitats. Other examples of cryptic communities include the Upper Jurassic cavity-dwelling fauna dominated by serpulids and scleractinian corals. Associated suspension feeders include thecideidine brachiopods, oysters, bryozoans, sponges, crinoids and sessile foraminifers. Serpulid-dominated bioconstructions have recent analogies in the Mediterranean and Carribean seas. Different type of dyke communities represent the Late Jurassic fauna of small sized ammonites which originated from both Tethyan and Boreal paleobioprovinces. It has not been established whether these amonites were juvenile, dwarfed specimens adapted to limited cave space or size-sorted adult specimens.


Jurassic Cryptic habitat Neptunian dykes Ostracods Serpulids Ammonites 



The authors wish to express their thanks to Dr. Mariusz Salamon of the Silesian University in Poland, and to an anonymous reviewer for both the review and useful comments. The language correction and the many useful comments by Dr. Bill Humphreys from the Western Australian Museum and by Dr. Ray Marshall (Sydney, Australia) are also acknowledged. This research was supported by the Slovak Research and Development Agency under contracts No. APVV-0248-07, APVV-0280-07 and APVV-0465-06 and by VEGA Agency grant No. 2/0068/08.


  1. Antonioli, F., S. Silenzi & S. Frisia, 2001. Tyrrhenian Holocene palaeoclimate trends from spelean serpulids. Quaternary Science Reviews 20: 1661–1670.CrossRefGoogle Scholar
  2. Aubrecht, R., 1992. Mestečská skala klippe and its importance for stratigraphy of Czorsztyn Unit (Biele Karpaty Mts., Western Slovakia). Acta Geologica Universitatis Comenianae 48: 55–64.Google Scholar
  3. Aubrecht, R., 1997. Indications of the Middle Jurassic emergence in the Czorsztyn Unit (Pieniny Klippen Belt, Western Carpathians). Geologica Carpathica 48: 71–84.Google Scholar
  4. Aubrecht, R. & H. Kozur, 1995. Pokornyopsis (Ostracoda) from submarine fissure fillings and cavities in the Late Jurassic of Czorsztyn Unit and the possible origin of the Recent anchialine faunas. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 196: 1–17.Google Scholar
  5. Aubrecht, R. & J. Szulc, 2006. Deciphering of the complex depositional and diagenetic history of a scarp limestone breccia (Middle Jurassic Krasin Breccia, Pieniny Klippen Belt, Western Carpathians). Sedimentary Geology 186: 265–281.CrossRefGoogle Scholar
  6. Aubrecht, R. & I. Túnyi, 2001. Original orientation of neptunian dykes in the Pieniny Klippen Belt (Western Carpahtians): the first results. Contributions to Geophysics and Geodesy 31: 557–578.Google Scholar
  7. Aubrecht, R., J. Szulc, J. Michalík, J. Schlögl & M. Wagreich, 2002. Middle Jurassic stromatactis mud-mound in the Pieniny Klippen Belt (Western Carpahtians). Facies 47: 113–126.CrossRefGoogle Scholar
  8. Aubrecht, R., J. Schlögl, M. Krobicki, H. Wierzbowski, B. A. Matyja & A. Wierzbowski, 2009. Middle Jurassic stromatactis mud-mounds in the Pieniny Klippen Belt (Carpathians)—a possible clue to the origin of stromatactis. Sedimentary Geology 213: 97–112.CrossRefGoogle Scholar
  9. Belmonte, G., G. Ingrosso, M. Poto, G. Quarta, M. D’Elia, R. Onorato & L. Calcagnile, 2009. Biogenic stalactites in submarine caves at the Cape of Otranto (SE Italy): dating and hypothesis on their formation. Marine Ecology 30: 376–382.CrossRefGoogle Scholar
  10. Birkenmajer, K., 1977. Jurassic and Cretaceous lithostratigraphic units of the Pieniny Klippen Belt, Carpathians, Poland. Studia Geologica Polonica 45: 1–158.Google Scholar
  11. Conti, M. A., S. Monari & J. Szabó, 2004. An overview of the Jurassic gastropods from Rocca Busambra (north-western Sicily, Italy). Rivista Italiana di Paleontologia e Stratigrafia 110: 43–51.Google Scholar
  12. Danielopol, D. L., A. Baltanás & W. F. Humphreys, 2000. Danielopolina kornickeri sp.n. (Ostracoda, Thaumatocypridoidea) from a western Australian anchialine cave: morphology and evolution. Zoologica Scripta 29: 1–16.CrossRefGoogle Scholar
  13. Dutton, A., G. Scicchitano, C. Monaco, J. M. Desmarchelier, F. Antonioli, K. Lambeck, T. M. Esat, L. K. Fifield, M. T. McCulloch & G. Mortimer, 2009. Uplift rates defined by U-series and 14C ages of serpulid-encrusted speleothems from submerged caves near Siracusa, Sicily (Italy). Quaternary Geochronology 4: 2–10.CrossRefGoogle Scholar
  14. Geyer, G., 1886. Über die liasischen Cephalopoden des Hierlatz bei Hallstatt. Abhandlungen der kaiserlich-königlichen Geologischen Reichsanstalt 12: 213–287.Google Scholar
  15. Hartmann, G., 1985. Danielopolina wilkensi n. sp. (Halocyprida, Thaumatocyprididae), ein neuer Ostracode aus einem marinen Lava-Tunnel auf Lanzarote (Kanarische Inseln). Mitteilungen aus dem Hamburgischen zoologischen Museum und Institut 82: 255–261.Google Scholar
  16. Hove, H. A. & P. Hurk, 1993. A review of Recent and fossil serpulid ‘reefs’; actuopalaeontology and the ‘Upper Malm’ serpulid limestones in NW Germany. Geologie en Mijnbouw 72: 23–67.Google Scholar
  17. Iliffe, T. M., 2000. Anchialine cave ecology. In Wilkens, H., D. C. Culver & W. F. Humphreys (eds), Ecosystems of the World, Vol. 30, Subterranean Ecosystems. Elsevier, Amsterdam: 59–76.Google Scholar
  18. Jurkovičová, H., 1980. Stratigraphy, lithology and microfacies in the Jurassic of the Pieniny Klippen Belt in the Krivoklát area. Manuscript, MSc. thesis, Comenius University, Bratislava: 1–78 (in Slovak).Google Scholar
  19. Kornicker, L. S. & T. M. Iliffe, 2000. Myodocopid Ostracoda from Exuma Sound, Bahamas and from marine caves and blue holes in the Bahamas, Bermuda, and Mexico. Smithsonian Contributions to Zoology 606: 1–98.Google Scholar
  20. Kornicker, L. S. & I. G. Sohn, 1976. Phylogeny, ontogeny, and morphology of living and fossil Thaumatocypridacea (Myodocopa: Ostracoda). Smithsonian Contributions to Zoology 219: 1–124.Google Scholar
  21. Kornicker, L. S., D. L. Danielopol & W. F. Humphreys, 2006. Description of the anchialine ostracode, Danielopolina sp. cf. kornickeri from Cristmas Island, Indian Ocean. Crustaceana 79: 77–88.CrossRefGoogle Scholar
  22. Kupriyanova, E. K., H. A. ten Hove, B. Sket, V. Zakšek, P. Trontelj & G. W. Rouse, 2009. Evolution of the unique freshwater cave-dwelling tube worm Marifugia cavatica (Annelida: Serpulidae). Systematics and Biodiversity 7: 389–401.CrossRefGoogle Scholar
  23. Macintyre, I. G., 1984. Extensive submarine lithification in a cave in the Belize Barrier Reef platform. Journal of Sedimentary Research 54: 221–235.Google Scholar
  24. Martire, L., C. Bertok, G. Pavia & C. Sarti, 2002. Stop 11—Rocca Drago: Mesozoic pelagic sedimentation over the faulted margin of a pelagic platform. In Santantonio, M. (ed.), General Field Trip Guidebook. 6th International Symposium on the Jurassic System, September 12–22, 2002, Mondello, Sicily, Italy: 91–96.Google Scholar
  25. Mihevc, A., 2000. The fossilized tubes from the roofless cave—probably the oldest known remains of the cave worm Marifugia (Annelida: Polychaeta). Acta Carsologica 29: 261–270 (in Slovenian with English abstract).Google Scholar
  26. Mihevc, A., P. Bosák, P. Pruner & B. Vokal, 2002. Fossil remains of the cave animal Marifugia cavatica in the unroofed cave in the Črrnotiče quarry, W Slovenia. Geologija 45: 471–474 (in Slovenian with English abstract).CrossRefGoogle Scholar
  27. Mišík, M., 1979. Sedimentological and microfacial study in the Jurassic of the Vršatec (castle) Klippe-Neptunic dykes, Oxfordian bioherm facies. Západné Karpaty, séria geológia 5: 7–56 (in Slovak with English summary).Google Scholar
  28. Mišík, M. & M. Sýkora, 1993. Jurassic submarine scarp breccia and neptunian dykes from the Kyjov-Pusté Pole klippen. Mineralia Slovaca 25: 411–427.Google Scholar
  29. Novosel, M., B. Jalžić, A. Novosel, M. Pasarić, A. Požar-Domac & I. Radić, 2007. Ecology of an anchialine cave in the Adriatic Sea with special reference to its thermal regime. Marine Ecology 28: 3–9. Google Scholar
  30. Pevný, J., 1969. Middle Jurassic brachiopods in the Klippen Belt of the central Váh Valley. Geologické práce, Správy 50: 133–160.Google Scholar
  31. Rakús, M., 1990. Ammonites and stratigraphy of Czorsztyn Limestones base in Klippen Belt of Slovakia and Ukrainian Carpathians. Knihovnička Zemního plynu a nafty 9b: 73–108 (in Slovak with English summary).Google Scholar
  32. Rakús, M., 1999. Liassic ammonites from Hierlatz, Austria. Abhandlungen der Geologischen Bundesanstalt 56: 343–377.Google Scholar
  33. Sanfilippo, R., 1996. Micromorphology, microstructure and functional morphology of the Josephella marenzelleri (Polychaeta, Serpulidae) tube. In Cherchi, A. (ed.), Autecology of Selected Fossil Organisms: Achievements and Problems. Bollettino della Societa Paleontologica Italiana, Special Vol. 3: 205–211.Google Scholar
  34. Schlögl, J., A. Tomašových, J. Stolarski & M. Rakús, 2001. Migration of the early Middle Oxfordian boreal ammonites documented from the from the neptunian dyke deposits in the Pieniny Klippen Belt, Western Carpathians (Slovakia). In International Conference on Paleobiogeography & Paleoecology, May 31–June 2, 2001, Piacenza & Castell’Arquato, Italy: 191–192.Google Scholar
  35. Schlögl, J., M. Rakús, Ch. Mangold & S. Elmi, 2005. Bajocian–Bathonian ammonite fauna of the Czorsztyn Unit, Pieniny Klippen Belt (Western Carpathians, Slovakia); its biostratigraphical and palaeobiogeographical significance. Acta Geologica Polonica 55: 339–359.Google Scholar
  36. Schlögl, J., A. Wierzbowski & M. Golej, 2008a. New data on the classic “Callovian” locality in Babierzowa Klippe (Pieniny Klippen Belt, Poland). Geologia 34: 206–207.Google Scholar
  37. Schlögl, J., J. Michalík, K. Zágoršek & F. Atrops, 2008b. Early Tithonian serpulid-dominated cavity-dwelling fauna, and the recruitment patter of the serpulid larvae. Journal of Paleontology 82: 382–392.CrossRefGoogle Scholar
  38. Schlögl, J., Ch. Mangold, A. Tomašových & M. Golej, 2009. Early and Middle Callovian ammonites from the Pieniny Klippen Belt (Western Carpathians) in hiatal successions: unique biostratigraphic evidence from sediment-filled fissure deposits. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 252: 55–79.CrossRefGoogle Scholar
  39. Sigal, J. & R. Truillet, 1966. Étude micropaléontologique et illistration des filons-couches granoclassés du Capo Sant’Andrea (Sicile). Bulletin de la Société géologique de France 7: 986–993.Google Scholar
  40. Tchoumachenco, P., 1988. Reconsitution stratigraphique et paléogéographique du Jurassique inférieur et moyen à partir des olistolithes inclus dans la Formation de Kotel (Stara Planina orientale, Bulgarie). Geologica Balcanica 18: 3–28.Google Scholar
  41. Uhlig, V., 1878. Beträge zur Kenntniss der Juraformation in den karpatischen Klippen. Jahrbuch der kaiserlich-königlischen geologischen Reichsanstalt 28: 641–658.Google Scholar
  42. Uhlig, V., 1881. Ueber die Fauna des rothen Kellowaykalkes der penninischen Klippe Babierzówka bei Neumarkt in West-Galizien. Jahrbuch der kaiserlich-königlischen geologischen Reichsanstalt 31: 383–422.Google Scholar
  43. Uhlig, V., 1890. Ergebnisse geologischer Aufnahmen in den westgalizischen Karpathen. II Theil. Der pieninische Klippenzug. Jahrbuch der kaiserlich-königlischen geologischen Reichsanstalt 40: 559–824.Google Scholar
  44. Wendt, J., 1971. Genese und Fauna submariner sedimentärer Spaltenfüllungen im mediterranen Jura. Palaeontographica Abhandlung A 136: 122–192.Google Scholar
  45. Wierzbowski, A., M. Jaworska & M. Krobicki, 1999. Jurassic (Upper Bajocian-lowest Oxfordian) ammonitico rosso facies in the Pieniny Klippen Belt, Carpathians, Poland: its fauna, age, microfacies and sedimentary environment. Studia Geologica Polonica 115: 7–74.Google Scholar
  46. Wierzbowski, A., J. Schlögl, R. Aubrecht & M. Krobicki, 2005. Rediscovery of the classic locality of Callovian in Babiarzowa Klippe (Pieniny Klippen Belt, Poland). Tomy Jurajskie 3: 11–14.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Geology and PaleontologyFaculty of Natural Sciences, Comenius UniversityBratislavaSlovakia
  2. 2.Geophysical InstituteSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations